21 research outputs found

    Estimation with Norm Regularization

    Full text link
    Analysis of non-asymptotic estimation error and structured statistical recovery based on norm regularized regression, such as Lasso, needs to consider four aspects: the norm, the loss function, the design matrix, and the noise model. This paper presents generalizations of such estimation error analysis on all four aspects compared to the existing literature. We characterize the restricted error set where the estimation error vector lies, establish relations between error sets for the constrained and regularized problems, and present an estimation error bound applicable to any norm. Precise characterizations of the bound is presented for isotropic as well as anisotropic subGaussian design matrices, subGaussian noise models, and convex loss functions, including least squares and generalized linear models. Generic chaining and associated results play an important role in the analysis. A key result from the analysis is that the sample complexity of all such estimators depends on the Gaussian width of a spherical cap corresponding to the restricted error set. Further, once the number of samples nn crosses the required sample complexity, the estimation error decreases as cn\frac{c}{\sqrt{n}}, where cc depends on the Gaussian width of the unit norm ball.Comment: Fixed technical issues. Generalized some result

    A Geometric View on Constrained M-Estimators

    Get PDF
    We study the estimation error of constrained M-estimators, and derive explicit upper bounds on the expected estimation error determined by the Gaussian width of the constraint set. Both of the cases where the true parameter is on the boundary of the constraint set (matched constraint), and where the true parameter is strictly in the constraint set (mismatched constraint) are considered. For both cases, we derive novel universal estimation error bounds for regression in a generalized linear model with the canonical link function. Our error bound for the mismatched constraint case is minimax optimal in terms of its dependence on the sample size, for Gaussian linear regression by the Lasso

    High Dimensional Data Enrichment: Interpretable, Fast, and Data-Efficient

    Full text link
    High dimensional structured data enriched model describes groups of observations by shared and per-group individual parameters, each with its own structure such as sparsity or group sparsity. In this paper, we consider the general form of data enrichment where data comes in a fixed but arbitrary number of groups G. Any convex function, e.g., norms, can characterize the structure of both shared and individual parameters. We propose an estimator for high dimensional data enriched model and provide conditions under which it consistently estimates both shared and individual parameters. We also delineate sample complexity of the estimator and present high probability non-asymptotic bound on estimation error of all parameters. Interestingly the sample complexity of our estimator translates to conditions on both per-group sample sizes and the total number of samples. We propose an iterative estimation algorithm with linear convergence rate and supplement our theoretical analysis with synthetic and real experimental results. Particularly, we show the predictive power of data-enriched model along with its interpretable results in anticancer drug sensitivity analysis
    corecore