907 research outputs found

    Increasing the Analytical Accessibility of Multishell and Diffusion Spectrum Imaging Data Using Generalized Q-Sampling Conversion

    Full text link
    Many diffusion MRI researchers, including the Human Connectome Project (HCP), acquire data using multishell (e.g., WU-Minn consortium) and diffusion spectrum imaging (DSI) schemes (e.g., USC-Harvard consortium). However, these data sets are not readily accessible to high angular resolution diffusion imaging (HARDI) analysis methods that are popular in connectomics analysis. Here we introduce a scheme conversion approach that transforms multishell and DSI data into their corresponding HARDI representations, thereby empowering HARDI-based analytical methods to make use of data acquired using non-HARDI approaches. This method was evaluated on both phantom and in-vivo human data sets by acquiring multishell, DSI, and HARDI data simultaneously, and comparing the converted HARDI, from non-HARDI methods, with the original HARDI data. Analysis on the phantom shows that the converted HARDI from DSI and multishell data strongly predicts the original HARDI (correlation coefficient > 0.9). Our in-vivo study shows that the converted HARDI can be reconstructed by constrained spherical deconvolution, and the fiber orientation distributions are consistent with those from the original HARDI. We further illustrate that our scheme conversion method can be applied to HCP data, and the converted HARDI do not appear to sacrifice angular resolution. Thus this novel approach can benefit all HARDI-based analysis approaches, allowing greater analytical accessibility to non-HARDI data, including data from the HCP

    Spherical deconvolution of multichannel diffusion MRI data with non-Gaussian noise models and spatial regularization

    Get PDF
    Spherical deconvolution (SD) methods are widely used to estimate the intra-voxel white-matter fiber orientations from diffusion MRI data. However, while some of these methods assume a zero-mean Gaussian distribution for the underlying noise, its real distribution is known to be non-Gaussian and to depend on the methodology used to combine multichannel signals. Indeed, the two prevailing methods for multichannel signal combination lead to Rician and noncentral Chi noise distributions. Here we develop a Robust and Unbiased Model-BAsed Spherical Deconvolution (RUMBA-SD) technique, intended to deal with realistic MRI noise, based on a Richardson-Lucy (RL) algorithm adapted to Rician and noncentral Chi likelihood models. To quantify the benefits of using proper noise models, RUMBA-SD was compared with dRL-SD, a well-established method based on the RL algorithm for Gaussian noise. Another aim of the study was to quantify the impact of including a total variation (TV) spatial regularization term in the estimation framework. To do this, we developed TV spatially-regularized versions of both RUMBA-SD and dRL-SD algorithms. The evaluation was performed by comparing various quality metrics on 132 three-dimensional synthetic phantoms involving different inter-fiber angles and volume fractions, which were contaminated with noise mimicking patterns generated by data processing in multichannel scanners. The results demonstrate that the inclusion of proper likelihood models leads to an increased ability to resolve fiber crossings with smaller inter-fiber angles and to better detect non-dominant fibers. The inclusion of TV regularization dramatically improved the resolution power of both techniques. The above findings were also verified in brain data

    Bayesian uncertainty quantification in linear models for diffusion MRI

    Full text link
    Diffusion MRI (dMRI) is a valuable tool in the assessment of tissue microstructure. By fitting a model to the dMRI signal it is possible to derive various quantitative features. Several of the most popular dMRI signal models are expansions in an appropriately chosen basis, where the coefficients are determined using some variation of least-squares. However, such approaches lack any notion of uncertainty, which could be valuable in e.g. group analyses. In this work, we use a probabilistic interpretation of linear least-squares methods to recast popular dMRI models as Bayesian ones. This makes it possible to quantify the uncertainty of any derived quantity. In particular, for quantities that are affine functions of the coefficients, the posterior distribution can be expressed in closed-form. We simulated measurements from single- and double-tensor models where the correct values of several quantities are known, to validate that the theoretically derived quantiles agree with those observed empirically. We included results from residual bootstrap for comparison and found good agreement. The validation employed several different models: Diffusion Tensor Imaging (DTI), Mean Apparent Propagator MRI (MAP-MRI) and Constrained Spherical Deconvolution (CSD). We also used in vivo data to visualize maps of quantitative features and corresponding uncertainties, and to show how our approach can be used in a group analysis to downweight subjects with high uncertainty. In summary, we convert successful linear models for dMRI signal estimation to probabilistic models, capable of accurate uncertainty quantification.Comment: Added results from a group analysis and a comparison with residual bootstra

    Fuzzy Fibers: Uncertainty in dMRI Tractography

    Full text link
    Fiber tracking based on diffusion weighted Magnetic Resonance Imaging (dMRI) allows for noninvasive reconstruction of fiber bundles in the human brain. In this chapter, we discuss sources of error and uncertainty in this technique, and review strategies that afford a more reliable interpretation of the results. This includes methods for computing and rendering probabilistic tractograms, which estimate precision in the face of measurement noise and artifacts. However, we also address aspects that have received less attention so far, such as model selection, partial voluming, and the impact of parameters, both in preprocessing and in fiber tracking itself. We conclude by giving impulses for future research

    Ball and rackets: inferring fiber fanning from diffusion-weighted MRI

    Get PDF
    A number of methods have been proposed for resolving crossing fibers from diffusion-weighted (DW) MRI. However, other complex fiber geometries have drawn minimal attention. In this study, we focus on fiber orientation dispersion induced by within-voxel fanning. We use a multi-compartment, model-based approach to estimate fiber dispersion. Bingham distributions are employed to represent continuous distributions of fiber orientations, centered around a main orientation, and capturing anisotropic dispersion. We evaluate the accuracy of the model for different simulated fanning geometries, under different acquisition protocols and we illustrate the high SNR and angular resolution needs. We also perform a qualitative comparison between our parametric approach and five popular non-parametric techniques that are based on orientation distribution functions (ODFs). This comparison illustrates how the same underlying geometry can be depicted by different methods. We apply the proposed model on high-quality, post-mortem macaque data and present whole-brain maps of fiber dispersion, as well as exquisite details on the local anatomy of fiber distributions in various white matter regions

    Evaluating the accuracy of diffusion MRI models in white matter

    Full text link
    Models of diffusion MRI within a voxel are useful for making inferences about the properties of the tissue and inferring fiber orientation distribution used by tractography algorithms. A useful model must fit the data accurately. However, evaluations of model-accuracy of some of the models that are commonly used in analyzing human white matter have not been published before. Here, we evaluate model-accuracy of the two main classes of diffusion MRI models. The diffusion tensor model (DTM) summarizes diffusion as a 3-dimensional Gaussian distribution. Sparse fascicle models (SFM) summarize the signal as a linear sum of signals originating from a collection of fascicles oriented in different directions. We use cross-validation to assess model-accuracy at different gradient amplitudes (b-values) throughout the white matter. Specifically, we fit each model to all the white matter voxels in one data set and then use the model to predict a second, independent data set. This is the first evaluation of model-accuracy of these models. In most of the white matter the DTM predicts the data more accurately than test-retest reliability; SFM model-accuracy is higher than test-retest reliability and also higher than the DTM, particularly for measurements with (a) a b-value above 1000 in locations containing fiber crossings, and (b) in the regions of the brain surrounding the optic radiations. The SFM also has better parameter-validity: it more accurately estimates the fiber orientation distribution function (fODF) in each voxel, which is useful for fiber tracking

    Doctor of Philosophy

    Get PDF
    dissertationDiffusion magnetic resonance imaging (dMRI) has become a popular technique to detect brain white matter structure. However, imaging noise, imaging artifacts, and modeling techniques, etc., create many uncertainties, which may generate misleading information for further analysis or applications, such as surgical planning. Therefore, how to analyze, effectively visualize, and reduce these uncertainties become very important research questions. In this dissertation, we present both rank-k decomposition and direct decomposition approaches based on spherical deconvolution to decompose the fiber directions more accurately for high angular resolution diffusion imaging (HARDI) data, which will reduce the uncertainties of the fiber directions. By applying volume rendering techniques to an ensemble of 3D orientation distribution function (ODF) glyphs, which we call SIP functions of diffusion shapes, one can elucidate the complex heteroscedastic structural variation in these local diffusion shapes. Furthermore, we quantify the extent of this variation by measuring the fraction of the volume of these shapes, which is consistent across all noise levels, the certain volume ratio. To better understand the uncertainties in white matter fiber tracks, we propose three metrics to quantify the differences between the results of diffusion tensor magnetic resonance imaging (DT-MRI) fiber tracking algorithms: the area between corresponding fibers of each bundle, the Earth Mover's Distance (EMD) between two fiber bundle volumes, and the current distance between two fiber bundle volumes. Based on these metrics, we discuss an interactive fiber track comparison visualization toolkit we have developed to visualize these uncertainties more efficiently. Physical phantoms, with high repeatability and reproducibility, are also designed with the hope of validating the dMRI techniques. In summary, this dissertation provides a better understanding about uncertainties in diffusion magnetic resonance imaging: where and how much are the uncertainties? How do we reduce these uncertainties? How can we possibly validate our algorithms
    corecore