5 research outputs found

    Multitaper estimation on arbitrary domains

    Full text link
    Multitaper estimators have enjoyed significant success in estimating spectral densities from finite samples using as tapers Slepian functions defined on the acquisition domain. Unfortunately, the numerical calculation of these Slepian tapers is only tractable for certain symmetric domains, such as rectangles or disks. In addition, no performance bounds are currently available for the mean squared error of the spectral density estimate. This situation is inadequate for applications such as cryo-electron microscopy, where noise models must be estimated from irregular domains with small sample sizes. We show that the multitaper estimator only depends on the linear space spanned by the tapers. As a result, Slepian tapers may be replaced by proxy tapers spanning the same subspace (validating the common practice of using partially converged solutions to the Slepian eigenproblem as tapers). These proxies may consequently be calculated using standard numerical algorithms for block diagonalization. We also prove a set of performance bounds for multitaper estimators on arbitrary domains. The method is demonstrated on synthetic and experimental datasets from cryo-electron microscopy, where it reduces mean squared error by a factor of two or more compared to traditional methods.Comment: 28 pages, 11 figure

    Learning Invariant Representations under General Interventions on the Response

    Full text link
    It has become increasingly common nowadays to collect observations of feature and response pairs from different environments. As a consequence, one has to apply learned predictors to data with a different distribution due to distribution shifts. One principled approach is to adopt the structural causal models to describe training and test models, following the invariance principle which says that the conditional distribution of the response given its predictors remains the same across environments. However, this principle might be violated in practical settings when the response is intervened. A natural question is whether it is still possible to identify other forms of invariance to facilitate prediction in unseen environments. To shed light on this challenging scenario, we focus on linear structural causal models (SCMs) and introduce invariant matching property (IMP), an explicit relation to capture interventions through an additional feature, leading to an alternative form of invariance that enables a unified treatment of general interventions on the response as well as the predictors. We analyze the asymptotic generalization errors of our method under both the discrete and continuous environment settings, where the continuous case is handled by relating it to the semiparametric varying coefficient models. We present algorithms that show competitive performance compared to existing methods over various experimental settings including a COVID dataset.Comment: Accepted to the IEEE Journal on Selected Areas in Information Theory. Special Issue: Causality: Fundamental Limits and Application

    Estimation of the Evolutionary Spectra With Application to Stationarity Test

    No full text
    corecore