3 research outputs found

    Improvement of PolSAR Decomposition Scattering Powers Using a Relative Decorrelation Measure

    Full text link
    In this letter, a methodology is proposed to improve the scattering powers obtained from model-based decomposition using Polarimetric Synthetic Aperture Radar (PolSAR) data. The novelty of this approach lies in utilizing the intrinsic information in the off-diagonal elements of the 3×\times3 coherency matrix T\mathbf{T} represented in the form of complex correlation coefficients. Two complex correlation coefficients are computed between co-polarization and cross-polarization components of the Pauli scattering vector. The difference between modulus of complex correlation coefficients corresponding to Topt\mathbf{T}^{\mathrm{opt}} (i.e. the degree of polarization (DOP) optimized coherency matrix), and T\mathbf{T} (original) matrices is obtained. Then a suitable scaling is performed using fractions \emph{i.e.,} (Tiiopt/i=13Tiiopt)(T_{ii}^{\mathrm{opt}}/\sum\limits_{i=1}^{3}T_{ii}^{\mathrm{opt}}) obtained from the diagonal elements of the Topt\mathbf{T}^{\mathrm{opt}} matrix. Thereafter, these new quantities are used in modifying the Yamaguchi 4-component scattering powers obtained from Topt\mathbf{T}^{\mathrm{opt}}. To corroborate the fact that these quantities have physical relevance, a quantitative analysis of these for the L-band AIRSAR San Francisco and the L-band Kyoto images is illustrated. Finally, the scattering powers obtained from the proposed methodology are compared with the corresponding powers obtained from the Yamaguchi \emph{et. al.,} 4-component (Y4O) decomposition and the Yamaguchi \emph{et. al.,} 4-component Rotated (Y4R) decomposition for the same data sets. The proportion of negative power pixels is also computed. The results show an improvement on all these attributes by using the proposed methodology.Comment: Accepted for publication in Remote Sensing Letter

    Estimation of Snow Surface Dielectric Constant From Polarimetric SAR Data

    No full text
    A novel methodology is proposed in this paper for the estimation of snow surface dielectric constant from polarimetric SAR (PolSAR) data. The dominant scattering-type magnitude proposed by Touzi et al. is used to characterize scattering mechanism over the snowpack. Two methods have been used to obtain the optimized degree polarization of a partially polarized wave: 1) the Touzi optimum degree of polarization given by Touzi et al. in 1992. The maximum (p(max)) and the minimum (p(min)) degree of polarizations are obtained along with the optimum transmitted polarizations (chi(opt)(t), psi(opt)(t)). 2) The adaptive generalized unitary transformation-based optimum degree of polarization m(E)(opt) proposed by Bhattacharya et al. in 2015. This optimum degree of polarization is obtained either by a real or a complex unitary transformation of the 3 x 3 coherency matrix. These two degrees of polarizations are used and compared in this study as a criterion to select the maximum number of pixels with surface dominant scattering. These pixels were then used to invert the snow surface dielectric constant. It has been observed that the m(E)(opt) have increased the number of pixels for inversion by approximate to 9-10% compared to the original data. On the other hand, it was observed that the Touzi maximum degree of polarization p(max) has increased the number of pixels for inversion by approximate to 2% compared to that of m(E)(opt). The proposed methodology is applied toRadarsat-2 PolSAR C-band datasets over the Indian Himalayan region. It is observed that the correlation coefficient between the measured and the estimated snow surface dielectric constant is 0.95 at 95% confidence interval with a root mean square error of 0.20

    Estimation of Snow Surface Dielectric Constant From Polarimetric SAR Data

    No full text
    corecore