45,271 research outputs found

    On estimation of entropy and mutual information of continuous distributions

    Get PDF
    Mutual information is used in a procedure to estimate time-delays between recordings of electroencephalogram (EEG) signals originating from epileptic animals and patients. We present a simple and reliable histogram-based method to estimate mutual information. The accuracies of this mutual information estimator and of a similar entropy estimator are discussed. The bias and variance calculations presented can also be applied to discrete valued systems. Finally, we present some simulation results, which are compared with earlier work

    Information In The Non-Stationary Case

    Full text link
    Information estimates such as the ``direct method'' of Strong et al. (1998) sidestep the difficult problem of estimating the joint distribution of response and stimulus by instead estimating the difference between the marginal and conditional entropies of the response. While this is an effective estimation strategy, it tempts the practitioner to ignore the role of the stimulus and the meaning of mutual information. We show here that, as the number of trials increases indefinitely, the direct (or ``plug-in'') estimate of marginal entropy converges (with probability 1) to the entropy of the time-averaged conditional distribution of the response, and the direct estimate of the conditional entropy converges to the time-averaged entropy of the conditional distribution of the response. Under joint stationarity and ergodicity of the response and stimulus, the difference of these quantities converges to the mutual information. When the stimulus is deterministic or non-stationary the direct estimate of information no longer estimates mutual information, which is no longer meaningful, but it remains a measure of variability of the response distribution across time

    Estimating Mixture Entropy with Pairwise Distances

    Full text link
    Mixture distributions arise in many parametric and non-parametric settings -- for example, in Gaussian mixture models and in non-parametric estimation. It is often necessary to compute the entropy of a mixture, but, in most cases, this quantity has no closed-form expression, making some form of approximation necessary. We propose a family of estimators based on a pairwise distance function between mixture components, and show that this estimator class has many attractive properties. For many distributions of interest, the proposed estimators are efficient to compute, differentiable in the mixture parameters, and become exact when the mixture components are clustered. We prove this family includes lower and upper bounds on the mixture entropy. The Chernoff α\alpha-divergence gives a lower bound when chosen as the distance function, with the Bhattacharyya distance providing the tightest lower bound for components that are symmetric and members of a location family. The Kullback-Leibler divergence gives an upper bound when used as the distance function. We provide closed-form expressions of these bounds for mixtures of Gaussians, and discuss their applications to the estimation of mutual information. We then demonstrate that our bounds are significantly tighter than well-known existing bounds using numeric simulations. This estimator class is very useful in optimization problems involving maximization/minimization of entropy and mutual information, such as MaxEnt and rate distortion problems.Comment: Corrects several errata in published version, in particular in Section V (bounds on mutual information

    Entropy inference and the James-Stein estimator, with application to nonlinear gene association networks

    Full text link
    We present a procedure for effective estimation of entropy and mutual information from small-sample data, and apply it to the problem of inferring high-dimensional gene association networks. Specifically, we develop a James-Stein-type shrinkage estimator, resulting in a procedure that is highly efficient statistically as well as computationally. Despite its simplicity, we show that it outperforms eight other entropy estimation procedures across a diverse range of sampling scenarios and data-generating models, even in cases of severe undersampling. We illustrate the approach by analyzing E. coli gene expression data and computing an entropy-based gene-association network from gene expression data. A computer program is available that implements the proposed shrinkage estimator.Comment: 18 pages, 3 figures, 1 tabl

    Mismatched Quantum Filtering and Entropic Information

    Full text link
    Quantum filtering is a signal processing technique that estimates the posterior state of a quantum system under continuous measurements and has become a standard tool in quantum information processing, with applications in quantum state preparation, quantum metrology, and quantum control. If the filter assumes a nominal model that differs from reality, however, the estimation accuracy is bound to suffer. Here I derive identities that relate the excess error caused by quantum filter mismatch to the relative entropy between the true and nominal observation probability measures, with one identity for Gaussian measurements, such as optical homodyne detection, and another for Poissonian measurements, such as photon counting. These identities generalize recent seminal results in classical information theory and provide new operational meanings to relative entropy, mutual information, and channel capacity in the context of quantum experiments.Comment: v1: first draft, 8 pages, v2: added introduction and more results on mutual information and channel capacity, 12 pages, v3: minor updates, v4: updated the presentatio
    • …
    corecore