7 research outputs found

    ONE UNEQUAL ERROR CONTROL METHOD FOR TELEMETRIC DATA TRANSMISSION

    Get PDF
    In wireless sensor networks (WSN) it is necessary to use very simple codes for transmission of information since the nodes in these networks have usually only limited energy available not only for transmission but also for processing. On the other hand, common codes do not usually take into account the fact that in case of telemetric information the weights of individual orders are not equal and errors in different orders cause different deviations from correct value. In this contribution, new very simple codes for transmission of telemetric information on WSN will be presented, which take into account the abovementioned requirements. Resulting square deviation will be used as a quality evaluation criterion. K e y w o r d s: telemetric information, resulting square deviation (RSD), low-density parity-check (LDPC) codes, unequal error control (UEC), wireless sensor networks (WSN

    Lowering the Error Floor of LDPC Codes Using Cyclic Liftings

    Full text link
    Cyclic liftings are proposed to lower the error floor of low-density parity-check (LDPC) codes. The liftings are designed to eliminate dominant trapping sets of the base code by removing the short cycles which form the trapping sets. We derive a necessary and sufficient condition for the cyclic permutations assigned to the edges of a cycle cc of length â„“(c)\ell(c) in the base graph such that the inverse image of cc in the lifted graph consists of only cycles of length strictly larger than â„“(c)\ell(c). The proposed method is universal in the sense that it can be applied to any LDPC code over any channel and for any iterative decoding algorithm. It also preserves important properties of the base code such as degree distributions, encoder and decoder structure, and in some cases, the code rate. The proposed method is applied to both structured and random codes over the binary symmetric channel (BSC). The error floor improves consistently by increasing the lifting degree, and the results show significant improvements in the error floor compared to the base code, a random code of the same degree distribution and block length, and a random lifting of the same degree. Similar improvements are also observed when the codes designed for the BSC are applied to the additive white Gaussian noise (AWGN) channel

    Estimation of bit and frame error rates of finite-length low-density parity-check codes on binary symmetric channels

    No full text
    A method for estimating the performance of low-density parity-check (LDPC) codes decoded by hard-decision iterative decoding algorithms on binary symmetric channels (BSCs) is proposed. Based on the enumeration of the smallest weight error patterns that cannot be all corrected by the decoder, this method estimates both the frame error rate (FER) and the bit error rate (BER) of a given LDPC code with very good precision for all crossover probabilities of practical interest. Through a number of examples, we show that the proposed method can be effectively applied to both regular and irregular LDPC codes and to a variety of hard-decision iterative decoding algorithms. Compared with the conventional Monte Carlo simulation, the proposed method has a much smaller computational complexity, particularly for lower error rates
    corecore