2 research outputs found

    Estimation in the probit normal model for binary outcomes using the SAEM algorithm

    No full text
    Generalized linear mixed models (GLMM) form a very general class of random effects models for discrete and continuous responses in the exponential family. They are useful in a variety of applications. The traditional likelihood approach for GLMM usually involves high dimensional integrations which are computationally intensive. In this work, we investigate the case of binary outcomes analyzed under a two stage probit normal model with random effects. First, it is shown how ML estimates of the fixed effects and variance components can be computed using a stochastic approximation of the EM algorithm (SAEM). The SAEM algorithm can be applied directly, or in conjunction with a parameter expansion version of EM to speed up the convergence. A procedure is also proposed to obtain REML estimates of variance components and REML-based estimates of fixed effects. Finally an application to a real data set involving a clinical trial is presented, in which these techniques are compared to other procedures (penalized quasi-likelihood, maximum likelihood, Bayesian inference) already available in classical softwares (SAS Glimmix, SAS Nlmixed, WinBUGS), as well as to a Monte Carlo EM (MCEM) algorithm.
    corecore