2,577 research outputs found

    A Self-Attention Deep Neural Network Regressor for real time blood glucose estimation in paediatric population using physiological signals

    Get PDF
    With the advent of modern digital technology, the physiological signals (such as electrocardiogram) are being acquired from portable wearable devices which are being used for non-invasive chronic disease management (such as Type 1 Diabetes). The diabetes management requires real-time assessment of blood glucose which is cumbersome for paediatric population due to clinical complexity and invasiveness. Therefore, real-time non-invasive blood glucose estimation is now pivotal for effective diabetes management. In this paper, we propose a Self-Attention Deep Neural Network Regressor for real-time non-invasive blood glucose estimation for paediatric population based on automatically extracted beat morphology. The first stage performs Morphological Extractor based on Self-Attention based Long Short-Term Memory driven by Convolutional Neural Network for highlighting local features based on temporal context. The second stage is based on Morphological Regressor driven by multilayer perceptron with dropout and batch normalization to avoid overfitting. We performed feature selection via logit model followed by Spearman's correlation among features to avoid feature redundancy. We trained as tested our model on publicly available MIT/BIH-Physionet databases and physiological signals acquired from a T1D paediatric population. We performed our evaluation via Clarke's Grid error to analyse estimation accuracy on range of blood values under different glycaemic conditions. The results show that our tool outperformed existing regression models with 89% accuracy under clinically acceptable range. The proposed model based on beat morphology significantly outperformed models based on HRV features

    Learning Mobility Flows from Urban Features with Spatial Interaction Models and Neural Networks

    Full text link
    A fundamental problem of interest to policy makers, urban planners, and other stakeholders involved in urban development projects is assessing the impact of planning and construction activities on mobility flows. This is a challenging task due to the different spatial, temporal, social, and economic factors influencing urban mobility flows. These flows, along with the influencing factors, can be modelled as attributed graphs with both node and edge features characterising locations in a city and the various types of relationships between them. In this paper, we address the problem of assessing origin-destination (OD) car flows between a location of interest and every other location in a city, given their features and the structural characteristics of the graph. We propose three neural network architectures, including graph neural networks (GNN), and conduct a systematic comparison between the proposed methods and state-of-the-art spatial interaction models, their modifications, and machine learning approaches. The objective of the paper is to address the practical problem of estimating potential flow between an urban development project location and other locations in the city, where the features of the project location are known in advance. We evaluate the performance of the models on a regression task using a custom data set of attributed car OD flows in London. We also visualise the model performance by showing the spatial distribution of flow residuals across London.Comment: 9 pages, 5 figures, to be published in the Proceedings of 2020 IEEE International Conference on Smart Computing (SMARTCOMP 2020

    Prediction of Housing Price and Forest Cover Using Mosaics with Uncertain Satellite Imagery

    Get PDF
    The growing world is more expensive to estimate land use, road length, and forest cover using a plant-scaled ground monitoring system. Satellite imaging contains a significant amount of detailed uncertain information. Combining this with machine learning aids in the organization of these data and the estimation of each variable separately. The resources necessary to deploy Machine learning technologies for Remote sensing images, on the other hand, restrict their reach ability and application. Based on satellite observations which are notably underutilised in impoverished nations, while practical competence to implement SIML might be restricted. Encoded forms of images are shared across tasks, and they will be calculated and sent to an infinite number of researchers who can achieve top-tier SIML performance by training a regression analysis onto the actual data. By separating the duties, the proposed SIML solution, MOSAIKS, shapes SIML approachable and global. A Featurization stage turns remote sensing data into concise vector representations, and a regression step makes it possible to learn the correlations which are specific to its particular task which link the obtained characteristics to the set of uncertain data

    Uncertainty-aware deep learning for prediction of remaining useful life of mechanical systems

    Get PDF
    Remaining useful life (RUL) prediction is a problem that researchers in the prognostics and health management (PHM) community have been studying for decades. Both physics-based and data-driven methods have been investigated, and in recent years, deep learning has gained significant attention. When sufficiently large and diverse datasets are available, deep neural networks can achieve state-of-the-art performance in RUL prediction for a variety of systems. However, for end users to trust the results of these models, especially as they are integrated into safety-critical systems, RUL prediction uncertainty must be captured. This work explores an approach for estimating both epistemic and heteroscedastic aleatoric uncertainties that emerge in RUL prediction deep neural networks and demonstrates that quantifying the overall impact of these uncertainties on predictions reveal valuable insight into model performance. Additionally, a study is carried out to observe the effects of RUL truth data augmentation on perceived uncertainties in the model

    Deep learning applied to fish otolith images

    Get PDF
    This thesis is concerned with classification and regression using deep learning applied to fish otolith images. Otoliths (earstones) are calcified structures in the inner ear of vertebrates, and are used, for instance, in fish stock assessment and fish age determination. We use convolutional neural networks – a class of deep learning models - on two specific problems: discrimination between Northeast Arctic Cod and Norwegian Coastal Cod, and age determination of Greenland halibut. In relation to classification and regression, we are also concerned with the usage of cross-validation procedures such as k*l-fold cross-validation, to obtain reliable test results. We obtain test results for all available data, and we argue for the usage of cross-validation on the bases of variations in test results. Furthermore, feature relevance attribution methods are discussed and compared, which aims at explaining outputs from deep learning models by attributing relevance scores to the input. These comparisons are conducted using image input heatmaps produced by methods such as gradient saliency maps, guided backpropagation, and integrated gradients, along with two proposed variations of those techniques

    A Mixed Data-Based Deep Neural Network to Estimate Leaf Area Index in Wheat Breeding Trials

    Get PDF
    Remote and non-destructive estimation of leaf area index (LAI) has been a challenge in the last few decades as the direct and indirect methods available are laborious and time-consuming. The recent emergence of high-throughput plant phenotyping platforms has increased the need to develop new phenotyping tools for better decision-making by breeders. In this paper, a novel model based on artificial intelligence algorithms and nadir-view red green blue (RGB) images taken from a terrestrial high throughput phenotyping platform is presented. The model mixes numerical data collected in a wheat breeding field and visual features extracted from the images to make rapid and accurate LAI estimations. Model-based LAI estimations were validated against LAI measurements determined non-destructively using an allometric relationship obtained in this study. The model performance was also compared with LAI estimates obtained by other classical indirect methods based on bottom-up hemispherical images and gaps fraction theory. Model-based LAI estimations were highly correlated with ground-truth LAI. The model performance was slightly better than that of the hemispherical image-based method, which tended to underestimate LAI. These results show the great potential of the developed model for near real-time LAI estimation, which can be further improved in the future by increasing the dataset used to train the model
    • …
    corecore