3 research outputs found

    Distance-Based Genome Rearrangement Phylogeny

    Get PDF
    Evolution operates on whole genomes through direct rearrangements of genes, such as inversions, transpositions, and inverted transpositions, as well as through operations, such as duplications, losses, and transfers, that also affect the gene content of the genomes. Because these events are rare relative to nucleotide substitutions, gene order data offer the possibility of resolving ancient branches in the tree of life; the combination of gene order data with sequence data also has the potential to provide more robust phylogenetic reconstructions, since each can elucidate evolution at different time scales. Distance corrections greatly improve the accuracy of phylogeny reconstructions from DNA sequences, enabling distance-based methods to approach the accuracy of the more elaborate methods based on parsimony or likelihood at a fraction of the computational cost. This paper focuses on developing distance correction methods for phylogeny reconstruction from whole genomes. The main question we investigate is how to estimate evolutionary histories from whole genomes with equal gene content, and we present a technique, the empirically derived estimator (EDE), that we have developed for this purpose. We study the use of EDE on whole genomes with identical gene content, and we explore the accuracy of phylogenies inferred using EDE with the neighbor joining and minimum evolution methods under a wide range of model conditions. Our study shows that tree reconstruction under these two methods is much more accurate when based on EDE distances than when based on other distances previously suggested for whole genomes

    Algorithms in comparative genomics

    Get PDF
    The field of comparative genomics is abundant with problems of interest to computer scientists. In this thesis, the author presents solutions to three contemporary problems: obtaining better alignments for phylogeny reconstruction, identifying related RNA sequences in genomes, and ranking Single Nucleotide Polymorphisms (SNPs) in genome-wide association studies (GWAS). Sequence alignment is a basic and widely used task in bioinformatics. Its applications include identifying protein structure, RNAs and transcription factor binding sites in genomes, and phylogeny reconstruction. Phylogenetic descriptions depend not only on the employed reconstruction technique, but also on the underlying sequence alignment. The author has studied and established a simple prescription for obtaining a better phylogeny by improving the underlying alignments used in phylogeny reconstruction. This was achieved by improving upon Gotoh\u27s iterative heuristic by iterating with maximum parsimony guide-trees. This approach has shown an improvement in accuracy over standard alignment programs. A novel alignment algorithm named Probalign-RNAgenome that can identify non-coding RNAs in genomic sequences was also developed. Non-coding RNAs play a critical role in the cell such as gene regulation. It is thought that many such RNAs lie undiscovered in the genome. To date, alignment based approaches have shown to be more accurate than thermodynamic methods for identifying such non-coding RNAs. Probalign-RNAgenome employs a probabilistic consistency based approach for aligning a query RNA sequence to its homolog in a genomic sequence. Results show that this approach is more accurate on real data than the widely used BLAST and Smith- Waterman algorithms. Within the realm of comparative genomics are also a large number of recently conducted GWAS. GWAS aim to identify regions in the genome that are associated with a given disease. The support vector machine (SVM) provides a discriminative alternative to the widely used chi-square statistic in GWAS. A novel hybrid strategy that combines the chi-square statistic with the SVM was developed and implemented. Its performance was studied on simulated data and the Wellcome Trust Case Control Consortium (WTCCC) studies. Results presented in this thesis show that the hybrid strategy ranks causal SNPs in simulated data significantly higher than the chi-square test and SVM alone. The results also show that the hybrid strategy ranks previously replicated SNPs and associated regions (where applicable) of type 1 diabetes, rheumatoid arthritis, and Crohn\u27s disease higher than the chi-square, SVM, and SVM Recursive Feature Elimination (SVM-RFE)

    Estimating the deviation from a molecular clock

    No full text
    We address the problem of estimating the degree to which the evolutionary history of a set of molecular sequences violates a strong molecular clock hypothesis. We quantify this deviation formally, by defining the “stretch” of a model tree with respect to the underlying ultrametric tree (indicated by time). We then define the “minimum stretch” of a dataset for a tree and show how this can be computed optimally in polynomial time. We also present a polynomial-time algorithm for computing a lower bound on the stretch of a given dataset for any tree. We then explore the performance of standard techniques in systematics for estimating the deviation of a dataset from a molecular clock. We show that standard methods, whether based upon maximum parsimony or maximum likelihood, can return infeasible values (i.e. values for the stretch which cannot be realized on a tree), and often under-estimate the true stretch. This suggests that current approximations of the degree to which data sets deviate from a molecular clock may significantly underestimate these deviations. We conclude with some suggestions for further research
    corecore