43,719 research outputs found

    Discovering Communities of Community Discovery

    Get PDF
    Discovering communities in complex networks means grouping nodes similar to each other, to uncover latent information about them. There are hundreds of different algorithms to solve the community detection task, each with its own understanding and definition of what a "community" is. Dozens of review works attempt to order such a diverse landscape -- classifying community discovery algorithms by the process they employ to detect communities, by their explicitly stated definition of community, or by their performance on a standardized task. In this paper, we classify community discovery algorithms according to a fourth criterion: the similarity of their results. We create an Algorithm Similarity Network (ASN), whose nodes are the community detection approaches, connected if they return similar groupings. We then perform community detection on this network, grouping algorithms that consistently return the same partitions or overlapping coverage over a span of more than one thousand synthetic and real world networks. This paper is an attempt to create a similarity-based classification of community detection algorithms based on empirical data. It improves over the state of the art by comparing more than seventy approaches, discovering that the ASN contains well-separated groups, making it a sensible tool for practitioners, aiding their choice of algorithms fitting their analytic needs

    Link-Prediction Enhanced Consensus Clustering for Complex Networks

    Full text link
    Many real networks that are inferred or collected from data are incomplete due to missing edges. Missing edges can be inherent to the dataset (Facebook friend links will never be complete) or the result of sampling (one may only have access to a portion of the data). The consequence is that downstream analyses that consume the network will often yield less accurate results than if the edges were complete. Community detection algorithms, in particular, often suffer when critical intra-community edges are missing. We propose a novel consensus clustering algorithm to enhance community detection on incomplete networks. Our framework utilizes existing community detection algorithms that process networks imputed by our link prediction based algorithm. The framework then merges their multiple outputs into a final consensus output. On average our method boosts performance of existing algorithms by 7% on artificial data and 17% on ego networks collected from Facebook

    Evaluating Overfit and Underfit in Models of Network Community Structure

    Full text link
    A common data mining task on networks is community detection, which seeks an unsupervised decomposition of a network into structural groups based on statistical regularities in the network's connectivity. Although many methods exist, the No Free Lunch theorem for community detection implies that each makes some kind of tradeoff, and no algorithm can be optimal on all inputs. Thus, different algorithms will over or underfit on different inputs, finding more, fewer, or just different communities than is optimal, and evaluation methods that use a metadata partition as a ground truth will produce misleading conclusions about general accuracy. Here, we present a broad evaluation of over and underfitting in community detection, comparing the behavior of 16 state-of-the-art community detection algorithms on a novel and structurally diverse corpus of 406 real-world networks. We find that (i) algorithms vary widely both in the number of communities they find and in their corresponding composition, given the same input, (ii) algorithms can be clustered into distinct high-level groups based on similarities of their outputs on real-world networks, and (iii) these differences induce wide variation in accuracy on link prediction and link description tasks. We introduce a new diagnostic for evaluating overfitting and underfitting in practice, and use it to roughly divide community detection methods into general and specialized learning algorithms. Across methods and inputs, Bayesian techniques based on the stochastic block model and a minimum description length approach to regularization represent the best general learning approach, but can be outperformed under specific circumstances. These results introduce both a theoretically principled approach to evaluate over and underfitting in models of network community structure and a realistic benchmark by which new methods may be evaluated and compared.Comment: 22 pages, 13 figures, 3 table
    corecore