11 research outputs found

    Interpreting and using CPDAGs with background knowledge

    Full text link
    We develop terminology and methods for working with maximally oriented partially directed acyclic graphs (maximal PDAGs). Maximal PDAGs arise from imposing restrictions on a Markov equivalence class of directed acyclic graphs, or equivalently on its graphical representation as a completed partially directed acyclic graph (CPDAG), for example when adding background knowledge about certain edge orientations. Although maximal PDAGs often arise in practice, causal methods have been mostly developed for CPDAGs. In this paper, we extend such methodology to maximal PDAGs. In particular, we develop methodology to read off possible ancestral relationships, we introduce a graphical criterion for covariate adjustment to estimate total causal effects, and we adapt the IDA and joint-IDA frameworks to estimate multi-sets of possible causal effects. We also present a simulation study that illustrates the gain in identifiability of total causal effects as the background knowledge increases. All methods are implemented in the R package pcalg.Comment: 17 pages, 6 figures, UAI 201

    Distributional Equivalence and Structure Learning for Bow-free Acyclic Path Diagrams

    Full text link
    We consider the problem of structure learning for bow-free acyclic path diagrams (BAPs). BAPs can be viewed as a generalization of linear Gaussian DAG models that allow for certain hidden variables. We present a first method for this problem using a greedy score-based search algorithm. We also prove some necessary and some sufficient conditions for distributional equivalence of BAPs which are used in an algorithmic ap- proach to compute (nearly) equivalent model structures. This allows us to infer lower bounds of causal effects. We also present applications to real and simulated datasets using our publicly available R-package

    Robust causal structure learning with some hidden variables

    Full text link
    We introduce a new method to estimate the Markov equivalence class of a directed acyclic graph (DAG) in the presence of hidden variables, in settings where the underlying DAG among the observed variables is sparse, and there are a few hidden variables that have a direct effect on many of the observed ones. Building on the so-called low rank plus sparse framework, we suggest a two-stage approach which first removes the effect of the hidden variables, and then estimates the Markov equivalence class of the underlying DAG under the assumption that there are no remaining hidden variables. This approach is consistent in certain high-dimensional regimes and performs favourably when compared to the state of the art, both in terms of graphical structure recovery and total causal effect estimation

    Local search for efficient causal effect estimation

    Full text link
    Causal effect estimation from observational data is an important but challenging problem. Causal effect estimation with unobserved variables in data is even more difficult. The challenges lie in (1) whether the causal effect can be estimated from observational data (identifiability); (2) accuracy of estimation (unbiasedness), and (3) fast data-driven algorithm for the estimation (efficiency). Each of the above problems by its own, is challenging. There does not exist many data-driven methods for causal effect estimation so far, and they solve one or two of the above problems, but not all. In this paper, we present an algorithm that is fast, unbiased and is able to confirm if a causal effect is identifiable or not under a very practical and commonly seen problem setting. To achieve high efficiency, we approach the causal effect estimation problem as a local search for the minimal adjustment variable sets in data. We have shown that identifiability and unbiased estimation can be both resolved using data in our problem setting, and we have developed theorems to support the local search for searching for adjustment variable sets to achieve unbiased causal effect estimation. We make use of frequent pattern mining strategy to further speed up the search process. Experiments performed on an extensive collection of synthetic and real-world datasets demonstrate that the proposed algorithm outperforms the state-of-the-art causal effect estimation methods in both accuracy and time-efficiency.Comment: 30 page

    Complete Graphical Characterization and Construction of Adjustment Sets in Markov Equivalence Classes of Ancestral Graphs

    Full text link
    We present a graphical criterion for covariate adjustment that is sound and complete for four different classes of causal graphical models: directed acyclic graphs (DAGs), maximum ancestral graphs (MAGs), completed partially directed acyclic graphs (CPDAGs), and partial ancestral graphs (PAGs). Our criterion unifies covariate adjustment for a large set of graph classes. Moreover, we define an explicit set that satisfies our criterion, if there is any set that satisfies our criterion. We also give efficient algorithms for constructing all sets that fulfill our criterion, implemented in the R package dagitty. Finally, we discuss the relationship between our criterion and other criteria for adjustment, and we provide new soundness and completeness proofs for the adjustment criterion for DAGs.Comment: 58 pages, 12 figures, to appear in JML
    corecore