6,258 research outputs found

    Relevance-based Word Embedding

    Full text link
    Learning a high-dimensional dense representation for vocabulary terms, also known as a word embedding, has recently attracted much attention in natural language processing and information retrieval tasks. The embedding vectors are typically learned based on term proximity in a large corpus. This means that the objective in well-known word embedding algorithms, e.g., word2vec, is to accurately predict adjacent word(s) for a given word or context. However, this objective is not necessarily equivalent to the goal of many information retrieval (IR) tasks. The primary objective in various IR tasks is to capture relevance instead of term proximity, syntactic, or even semantic similarity. This is the motivation for developing unsupervised relevance-based word embedding models that learn word representations based on query-document relevance information. In this paper, we propose two learning models with different objective functions; one learns a relevance distribution over the vocabulary set for each query, and the other classifies each term as belonging to the relevant or non-relevant class for each query. To train our models, we used over six million unique queries and the top ranked documents retrieved in response to each query, which are assumed to be relevant to the query. We extrinsically evaluate our learned word representation models using two IR tasks: query expansion and query classification. Both query expansion experiments on four TREC collections and query classification experiments on the KDD Cup 2005 dataset suggest that the relevance-based word embedding models significantly outperform state-of-the-art proximity-based embedding models, such as word2vec and GloVe.Comment: to appear in the proceedings of The 40th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR '17

    Neo: A Learned Query Optimizer

    Full text link
    Query optimization is one of the most challenging problems in database systems. Despite the progress made over the past decades, query optimizers remain extremely complex components that require a great deal of hand-tuning for specific workloads and datasets. Motivated by this shortcoming and inspired by recent advances in applying machine learning to data management challenges, we introduce Neo (Neural Optimizer), a novel learning-based query optimizer that relies on deep neural networks to generate query executions plans. Neo bootstraps its query optimization model from existing optimizers and continues to learn from incoming queries, building upon its successes and learning from its failures. Furthermore, Neo naturally adapts to underlying data patterns and is robust to estimation errors. Experimental results demonstrate that Neo, even when bootstrapped from a simple optimizer like PostgreSQL, can learn a model that offers similar performance to state-of-the-art commercial optimizers, and in some cases even surpass them

    Query Expansion with Locally-Trained Word Embeddings

    Full text link
    Continuous space word embeddings have received a great deal of attention in the natural language processing and machine learning communities for their ability to model term similarity and other relationships. We study the use of term relatedness in the context of query expansion for ad hoc information retrieval. We demonstrate that word embeddings such as word2vec and GloVe, when trained globally, underperform corpus and query specific embeddings for retrieval tasks. These results suggest that other tasks benefiting from global embeddings may also benefit from local embeddings
    • …
    corecore