424 research outputs found

    Threshold-optimized decision-level fusion and its application to biometrics

    Get PDF
    Fusion is a popular practice to increase the reliability of biometric verification. In this paper, we propose an optimal fusion scheme at decision level by the AND or OR rule, based on optimizing matching score thresholds. The proposed fusion scheme will always give an improvement in the Neyman–Pearson sense over the component classifiers that are fused. The theory of the threshold-optimized decision-level fusion is presented, and the applications are discussed. Fusion experiments are done on the FRGC database which contains 2D texture data and 3D shape data. The proposed decision fusion improves the system performance, in a way comparable to or better than the conventional score-level fusion. It is noteworthy that in practice, the threshold-optimized decision-level fusion by the OR rule is especially useful in presence of outliers

    Confidence Measures for Automatic and Interactive Speech Recognition

    Full text link
    [EN] This thesis work contributes to the field of the {Automatic Speech Recognition} (ASR). And particularly to the {Interactive Speech Transcription} and {Confidence Measures} (CM) for ASR. The main goals of this thesis work can be summarised as follows: 1. To design IST methods and tools to tackle the problem of improving automatically generated transcripts. 2. To assess the designed IST methods and tools on real-life tasks of transcription in large educational repositories of video lectures. 3. To improve the reliability of the IST by improving the underlying (CM). Abstracts: The {Automatic Speech Recognition} (ASR) is a crucial task in a broad range of important applications which could not accomplished by means of manual transcription. The ASR can provide cost-effective transcripts in scenarios of increasing social impact such as the {Massive Open Online Courses} (MOOC), for which the availability of accurate enough is crucial even if they are not flawless. The transcripts enable search-ability, summarisation, recommendation, translation; they make the contents accessible to non-native speakers and users with impairments, etc. The usefulness is such that students improve their academic performance when learning from subtitled video lectures even when transcript is not perfect. Unfortunately, the current ASR technology is still far from the necessary accuracy. The imperfect transcripts resulting from ASR can be manually supervised and corrected, but the effort can be even higher than manual transcription. For the purpose of alleviating this issue, a novel {Interactive Transcription of Speech} (IST) system is presented in this thesis. This IST succeeded in reducing the effort if a small quantity of errors can be allowed; and also in improving the underlying ASR models in a cost-effective way. In other to adequate the proposed framework into real-life MOOCs, another intelligent interaction methods involving limited user effort were investigated. And also, it was introduced a new method which benefit from the user interactions to improve automatically the unsupervised parts ({Constrained Search} for ASR). The conducted research was deployed into a web-based IST platform with which it was possible to produce a massive number of semi-supervised lectures from two different well-known repositories, videoLectures.net and poliMedia. Finally, the performance of the IST and ASR systems can be easily increased by improving the computation of the {Confidence Measure} (CM) of transcribed words. As so, two contributions were developed: a new particular {Logistic Regresion} (LR) model; and the speaker adaption of the CM for cases in which it is possible, such with MOOCs.[ES] Este trabajo contribuye en el campo del {reconocimiento automático del habla} (RAH). Y en especial, en el de la {transcripción interactiva del habla} (TIH) y el de las {medidas de confianza} (MC) para RAH. Los objetivos principales son los siguientes: 1. Diseño de métodos y herramientas TIH para mejorar las transcripciones automáticas. 2. Evaluar los métodos y herramientas TIH empleando tareas de transcripción realistas extraídas de grandes repositorios de vídeos educacionales. 3. Mejorar la fiabilidad del TIH mediante la mejora de las MC. Resumen: El {reconocimiento automático del habla} (RAH) es una tarea crucial en una amplia gama de aplicaciones importantes que no podrían realizarse mediante transcripción manual. El RAH puede proporcionar transcripciones rentables en escenarios de creciente impacto social como el de los {cursos abiertos en linea masivos} (MOOC), para el que la disponibilidad de transcripciones es crucial, incluso cuando no son completamente perfectas. Las transcripciones permiten la automatización de procesos como buscar, resumir, recomendar, traducir; hacen que los contenidos sean más accesibles para hablantes no nativos y usuarios con discapacidades, etc. Incluso se ha comprobado que mejora el rendimiento de los estudiantes que aprenden de videos con subtítulos incluso cuando estos no son completamente perfectos. Desafortunadamente, la tecnología RAH actual aún está lejos de la precisión necesaria. Las transcripciones imperfectas resultantes del RAH pueden ser supervisadas y corregidas manualmente, pero el esfuerzo puede ser incluso superior al de la transcripción manual. Con el fin de aliviar este problema, esta tesis presenta un novedoso sistema de {transcripción interactiva del habla} (TIH). Este método TIH consigue reducir el esfuerzo de semi-supervisión siempre que sea aceptable una pequeña cantidad de errores; además mejora a la par los modelos RAH subyacentes. Con objeto de transportar el marco propuesto para MOOCs, también se investigaron otros métodos de interacción inteligentes que involucran esfuerzo limitado por parte del usuario. Además, se introdujo un nuevo método que aprovecha las interacciones para mejorar aún más las partes no supervisadas (ASR con {búsqueda restringida}). La investigación en TIH llevada a cabo se desplegó en una plataforma web con el que fue posible producir un número masivo de transcripciones de videos de dos conocidos repositorios, videoLectures.net y poliMedia. Por último, el rendimiento de la TIH y los sistemas de RAH se puede aumentar directamente mediante la mejora de la estimación de la {medida de confianza} (MC) de las palabras transcritas. Por este motivo se desarrollaron dos contribuciones: un nuevo modelo discriminativo {logístico} (LR); y la adaptación al locutor de la MC para los casos en que es posible, como por ejemplo en MOOCs.[CA] Aquest treball hi contribueix al camp del {reconeixment automàtic de la parla} (RAP). I en especial, al de la {transcripció interactiva de la parla} i el de {mesures de confiança} (MC) per a RAP. Els objectius principals són els següents: 1. Dissenyar mètodes i eines per a TIP per tal de millorar les transcripcions automàtiques. 2. Avaluar els mètodes i eines TIP per a tasques de transcripció realistes extretes de grans repositoris de vídeos educacionals. 3. Millorar la fiabilitat del TIP, mitjançant la millora de les MC. Resum: El {reconeixment automàtic de la parla} (RAP) és una tasca crucial per una àmplia gamma d'aplicacions importants que no es poden dur a terme per mitjà de la transcripció manual. El RAP pot proporcionar transcripcions en escenaris de creixent impacte social com els {cursos online oberts massius} (MOOC). Les transcripcions permeten automatitzar tasques com ara cercar, resumir, recomanar, traduir; a més a més, fa accessibles els continguts als parlants no nadius i els usuaris amb discapacitat, etc. Fins i tot, pot millorar el rendiment acadèmic de estudiants que aprenen de xerrades amb subtítols, encara que aquests subtítols no siguen perfectes. Malauradament, la tecnologia RAP actual encara està lluny de la precisió necessària. Les transcripcions imperfectes resultants de RAP poden ser supervisades i corregides manualment, però aquest l'esforç pot acabar sent superior a la transcripció manual. Per tal de resoldre aquest problema, en aquest treball es presenta un sistema nou per a {transcripció interactiva de la parla} (TIP). Aquest sistema TIP va ser reeixit en la reducció de l'esforç per quan es pot permetre una certa quantitat d'errors; així com també en en la millora dels models RAP subjacents. Per tal d'adequar el marc proposat per a MOOCs, també es van investigar altres mètodes d'interacció intel·ligents amb esforç d''usuari limitat. A més a més, es va introduir un nou mètode que aprofita les interaccions per tal de millorar encara més les parts no supervisades (RAP amb {cerca restringida}). La investigació en TIP duta a terme es va desplegar en una plataforma web amb la qual va ser possible produir un nombre massiu de transcripcions semi-supervisades de xerrades de repositoris ben coneguts, videoLectures.net i poliMedia. Finalment, el rendiment de la TIP i els sistemes de RAP es pot augmentar directament mitjançant la millora de l'estimació de la {Confiança Mesura} (MC) de les paraules transcrites. Per tant, es van desenvolupar dues contribucions: un nou model discriminatiu logístic (LR); i l'adaptació al locutor de la MC per casos en que és possible, per exemple amb MOOCs.Sánchez Cortina, I. (2016). Confidence Measures for Automatic and Interactive Speech Recognition [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/61473TESI

    Confidence Scoring and Speaker Adaptation in Mobile Automatic Speech Recognition Applications

    Get PDF
    Generally, the user group of a language is remarkably diverse in terms of speaker-specific characteristics such as dialect and speaking style. Hence, quality of spoken content varies notably from one individual to another. This diversity causes problems for Automatic Speech Recognition systems. An Automatic Speech Recognition system should be able to assess the hypothesised results. This can be done by evaluating a confidence measure on the recognition results and comparing the resulting measure to a specified threshold. This threshold value, referred to as confidence score, informs how reliable a particular recognition result is for the given speech. A system should perform optimally irrespective of input speaker characteristics. However, most systems are inflexible and non-adaptive and thus, speaker adaptability can be improved. For achieving these purposes, a solid criterion is required to evaluate the quality of spoken content and the system should be made robust and adaptive towards new speakers as well. This thesis implements a confidence score using posterior probabilities to examine the quality of the output, based on the speech data and corpora provided by Devoca Oy. Furthermore, speaker adaptation algorithms: Maximum Likelihood Linear Regression and Maximum a Posteriori are applied on a GMM-HMM system and their results are compared. Experiments show that Maximum a Posteriori adaptation brings 2% to 25% improvement in word error rates of semi-continuous model and is recommended for use in the commercial product. The results of other methods are also reported. In addition, word graph is suggested as the method for obtaining posterior probabilities. Since it guarantees no such improvement in the results, the confidence score is proposed as an optional feature for the system

    Ensembles for sequence learning

    Get PDF
    This thesis explores the application of ensemble methods to sequential learning tasks. The focus is on the development and the critical examination of new methods or novel applications of existing methods, with emphasis on supervised and reinforcement learning problems. In both types of problems, even after having observed a certain amount of data, we are often faced with uncertainty as to which hypothesis is correct among all the possible ones. However, in many methods for both supervised and for reinforcement learning problems this uncertainty is ignored, in the sense that there is a single solution selected out of the whole of the hypothesis space. Apart from the classical solution of analytical Bayesian formulations, ensemble methods offer an alternative approach to representing this uncertainty. This is done simply through maintaining a set of alternative hypotheses. The sequential supervised problem considered is that of automatic speech recognition using hidden Markov models. The application of ensemble methods to the problem represents a challenge in itself, since most such methods can not be readily adapted to sequential learning tasks. This thesis proposes a number of different approaches for applying ensemble methods to speech recognition and develops methods for effective training of phonetic mixtures with or without access to phonetic alignment data. Furthermore, the notion of expected loss is introduced for integrating probabilistic models with the boosting approach. In some cases substantial improvements over the baseline system are obtained. In reinforcement learning problems the goal is to act in such a way as to maximise future reward in a given environment. In such problems uncertainty becomes important since neither the environment nor the distribution of rewards that result from each action are known. This thesis presents novel algorithms for acting nearly optimally under uncertainty based on theoretical considerations. Some ensemble-based representations of uncertainty (including a fully Bayesian model) are developed and tested on a few simple tasks resulting in performance comparable with the state of the art. The thesis also draws some parallels between a proposed representation of uncertainty based on gradient-estimates and on"prioritised sweeping" and between the application of reinforcement learning to controlling an ensemble of classifiers and classical supervised ensemble learning methods

    Multi-system Biometric Authentication: Optimal Fusion and User-Specific Information

    Get PDF
    Verifying a person's identity claim by combining multiple biometric systems (fusion) is a promising solution to identity theft and automatic access control. This thesis contributes to the state-of-the-art of multimodal biometric fusion by improving the understanding of fusion and by enhancing fusion performance using information specific to a user. One problem to deal with at the score level fusion is to combine system outputs of different types. Two statistically sound representations of scores are probability and log-likelihood ratio (LLR). While they are equivalent in theory, LLR is much more useful in practice because its distribution can be approximated by a Gaussian distribution, which makes it useful to analyze the problem of fusion. Furthermore, its score statistics (mean and covariance) conditioned on the claimed user identity can be better exploited. Our first contribution is to estimate the fusion performance given the class-conditional score statistics and given a particular fusion operator/classifier. Thanks to the score statistics, we can predict fusion performance with reasonable accuracy, identify conditions which favor a particular fusion operator, study the joint phenomenon of combining system outputs with different degrees of strength and correlation and possibly correct the adverse effect of bias (due to the score-level mismatch between training and test sets) on fusion. While in practice the class-conditional Gaussian assumption is not always true, the estimated performance is found to be acceptable. Our second contribution is to exploit the user-specific prior knowledge by limiting the class-conditional Gaussian assumption to each user. We exploit this hypothesis in two strategies. In the first strategy, we combine a user-specific fusion classifier with a user-independent fusion classifier by means of two LLR scores, which are then weighted to obtain a single output. We show that combining both user-specific and user-independent LLR outputs always results in improved performance than using the better of the two. In the second strategy, we propose a statistic called the user-specific F-ratio, which measures the discriminative power of a given user based on the Gaussian assumption. Although similar class separability measures exist, e.g., the Fisher-ratio for a two-class problem and the d-prime statistic, F-ratio is more suitable because it is related to Equal Error Rate in a closed form. F-ratio is used in the following applications: a user-specific score normalization procedure, a user-specific criterion to rank users and a user-specific fusion operator that selectively considers a subset of systems for fusion. The resultant fusion operator leads to a statistically significantly increased performance with respect to the state-of-the-art fusion approaches. Even though the applications are different, the proposed methods share the following common advantages. Firstly, they are robust to deviation from the Gaussian assumption. Secondly, they are robust to few training data samples thanks to Bayesian adaptation. Finally, they consider both the client and impostor information simultaneously

    Projected Randomized Smoothing for Certified Adversarial Robustness

    Full text link
    Randomized smoothing is the current state-of-the-art method for producing provably robust classifiers. While randomized smoothing typically yields robust 2\ell_2-ball certificates, recent research has generalized provable robustness to different norm balls as well as anisotropic regions. This work considers a classifier architecture that first projects onto a low-dimensional approximation of the data manifold and then applies a standard classifier. By performing randomized smoothing in the low-dimensional projected space, we characterize the certified region of our smoothed composite classifier back in the high-dimensional input space and prove a tractable lower bound on its volume. We show experimentally on CIFAR-10 and SVHN that classifiers without the initial projection are vulnerable to perturbations that are normal to the data manifold and yet are captured by the certified regions of our method. We compare the volume of our certified regions against various baselines and show that our method improves on the state-of-the-art by many orders of magnitude.Comment: Transactions on Machine Learning Research (TMLR) 202

    Human robot interaction in a crowded environment

    No full text
    Human Robot Interaction (HRI) is the primary means of establishing natural and affective communication between humans and robots. HRI enables robots to act in a way similar to humans in order to assist in activities that are considered to be laborious, unsafe, or repetitive. Vision based human robot interaction is a major component of HRI, with which visual information is used to interpret how human interaction takes place. Common tasks of HRI include finding pre-trained static or dynamic gestures in an image, which involves localising different key parts of the human body such as the face and hands. This information is subsequently used to extract different gestures. After the initial detection process, the robot is required to comprehend the underlying meaning of these gestures [3]. Thus far, most gesture recognition systems can only detect gestures and identify a person in relatively static environments. This is not realistic for practical applications as difficulties may arise from people‟s movements and changing illumination conditions. Another issue to consider is that of identifying the commanding person in a crowded scene, which is important for interpreting the navigation commands. To this end, it is necessary to associate the gesture to the correct person and automatic reasoning is required to extract the most probable location of the person who has initiated the gesture. In this thesis, we have proposed a practical framework for addressing the above issues. It attempts to achieve a coarse level understanding about a given environment before engaging in active communication. This includes recognizing human robot interaction, where a person has the intention to communicate with the robot. In this regard, it is necessary to differentiate if people present are engaged with each other or their surrounding environment. The basic task is to detect and reason about the environmental context and different interactions so as to respond accordingly. For example, if individuals are engaged in conversation, the robot should realize it is best not to disturb or, if an individual is receptive to the robot‟s interaction, it may approach the person. Finally, if the user is moving in the environment, it can analyse further to understand if any help can be offered in assisting this user. The method proposed in this thesis combines multiple visual cues in a Bayesian framework to identify people in a scene and determine potential intentions. For improving system performance, contextual feedback is used, which allows the Bayesian network to evolve and adjust itself according to the surrounding environment. The results achieved demonstrate the effectiveness of the technique in dealing with human-robot interaction in a relatively crowded environment [7]

    Automatic human face detection in color images

    Get PDF
    Automatic human face detection in digital image has been an active area of research over the past decade. Among its numerous applications, face detection plays a key role in face recognition system for biometric personal identification, face tracking for intelligent human computer interface (HCI), and face segmentation for object-based video coding. Despite significant progress in the field in recent years, detecting human faces in unconstrained and complex images remains a challenging problem in computer vision. An automatic system that possesses a similar capability as the human vision system in detecting faces is still a far-reaching goal. This thesis focuses on the problem of detecting human laces in color images. Although many early face detection algorithms were designed to work on gray-scale Images, strong evidence exists to suggest face detection can be done more efficiently by taking into account color characteristics of the human face. In this thesis, we present a complete and systematic face detection algorithm that combines the strengths of both analytic and holistic approaches to face detection. The algorithm is developed to detect quasi-frontal faces in complex color Images. This face class, which represents typical detection scenarios in most practical applications of face detection, covers a wide range of face poses Including all in-plane rotations and some out-of-plane rotations. The algorithm is organized into a number of cascading stages including skin region segmentation, face candidate selection, and face verification. In each of these stages, various visual cues are utilized to narrow the search space for faces. In this thesis, we present a comprehensive analysis of skin detection using color pixel classification, and the effects of factors such as the color space, color classification algorithm on segmentation performance. We also propose a novel and efficient face candidate selection technique that is based on color-based eye region detection and a geometric face model. This candidate selection technique eliminates the computation-intensive step of window scanning often employed In holistic face detection, and simplifies the task of detecting rotated faces. Besides various heuristic techniques for face candidate verification, we developface/nonface classifiers based on the naive Bayesian model, and investigate three feature extraction schemes, namely intensity, projection on face subspace and edge-based. Techniques for improving face/nonface classification are also proposed, including bootstrapping, classifier combination and using contextual information. On a test set of face and nonface patterns, the combination of three Bayesian classifiers has a correct detection rate of 98.6% at a false positive rate of 10%. Extensive testing results have shown that the proposed face detector achieves good performance in terms of both detection rate and alignment between the detected faces and the true faces. On a test set of 200 images containing 231 faces taken from the ECU face detection database, the proposed face detector has a correct detection rate of 90.04% and makes 10 false detections. We have found that the proposed face detector is more robust In detecting in-plane rotated laces, compared to existing face detectors. +D2

    OFSET_mine:an integrated framework for cardiovascular diseases risk prediction based on retinal vascular function

    Get PDF
    As cardiovascular disease (CVD) represents a spectrum of disorders that often manifestfor the first time through an acute life-threatening event, early identification of seemingly healthy subjects with various degrees of risk is a priority.More recently, traditional scores used for early identification of CVD risk are slowly being replaced by more sensitive biomarkers that assess individual, rather than population risks for CVD. Among these, retinal vascular function, as assessed by the retinal vessel analysis method (RVA), has been proven as an accurate reflection of subclinical CVD in groups of participants without overt disease but with certain inherited or acquired risk factors. Furthermore, in order to correctly detect individual risk at an early stage, specialized machine learning methods and featureselection techniques that can cope with the characteristics of the data need to bedevised.The main contribution of this thesis is an integrated framework, OFSET_mine, that combinesnovel machine learning methods to produce a bespoke solution for Cardiovascular Risk Prediction based on RVA data that is also applicable to other medical datasets with similar characteristics. The three identified essential characteristics are 1) imbalanced dataset,2) high dimensionality and 3) overlapping feature ranges with the possibility of acquiring new samples. The thesis proposes FiltADASYN as an oversampling method that deals with imbalance, DD_Rank as a feature selection method that handles high dimensionality, and GCO_mine as a method for individual-based classification, all three integrated within the OFSET_mine framework.The new oversampling method FiltADASYN extends Adaptive Synthetic Oversampling(ADASYN) with an additional step to filter the generated samples and improve the reliability of the resultant sample set. The feature selection method DD_Rank is based on Restricted Boltzmann Machine (RBM) and ranks features according to their stability and discrimination power. GCO_mine is a lazy learning method based on Graph Cut Optimization (GCO), which considers both the local arrangements and the global structure of the data.OFSET_mine compares favourably to well established composite techniques. Itex hibits high classification performance when applied to a wide range of benchmark medical datasets with variable sample size, dimensionality and imbalance ratios.When applying OFSET _mine on our RVA data, an accuracy of 99.52% is achieved. In addition, using OFSET, the hybrid solution of FiltADASYN and DD_Rank, with Random Forest on our RVA data produces risk group classifications with accuracy 99.68%. This not only reflects the success of the framework but also establishes RVAas a valuable cardiovascular risk predicto
    corecore