1,239 research outputs found

    Dispensing with channel estimation: differentially modulated cooperative wireless communications

    No full text
    As a benefit of bypassing the potentially excessive complexity and yet inaccurate channel estimation, differentially encoded modulation in conjunction with low-complexity noncoherent detection constitutes a viable candidate for user-cooperative systems, where estimating all the links by the relays is unrealistic. In order to stimulate further research on differentially modulated cooperative systems, a number of fundamental challenges encountered in their practical implementations are addressed, including the time-variant-channel-induced performance erosion, flexible cooperative protocol designs, resource allocation as well as its high-spectral-efficiency transceiver design. Our investigations demonstrate the quantitative benefits of cooperative wireless networks both from a pure capacity perspective as well as from a practical system design perspective

    Detect-and-forward relaying aided cooperative spatial modulation for wireless networks

    No full text
    A novel detect-and-forward (DeF) relaying aided cooperative SM scheme is proposed, which is capable of striking a flexible tradeoff in terms of the achievable bit error ratio (BER), complexity and unequal error protection (UEP). More specifically, SM is invoked at the source node (SN) and the information bit stream is divided into two different sets: the antenna index-bits (AI-bits) as well as the amplitude and phase modulation-bits (APM-bits). By exploiting the different importance of the AI-bits and the APM-bits in SM detection, we propose three low-complexity, yet powerful relay protocols, namely the partial, the hybrid and the hierarchical modulation (HM) based DeF relaying schemes. These schemes determine the most appropriate number of bits to be re-modulated by carefully considering their potential benefits and then assigning a specific modulation scheme for relaying the message. As a further benefit, the employment of multiple radio frequency (RF) chains and the requirement of tight inter-relay synchronization (IRS) can be avoided. Moreover, by exploiting the benefits of our low-complexity relaying protocols and our inter-element interference (IEI) model, a low-complexity maximum-likelihood (ML) detector is proposed for jointly detecting the signal received both via the source-destination (SD) and relay-destination (RD) links. Additionally, an upper bound of the BER is derived for our DeF-SM scheme. Our numerical results show that the bound is asymptotically tight in the high-SNR region and the proposed schemes provide beneficial system performance improvements compared to the conventional MIMO schemes in an identical cooperative scenario.<br/

    A Novel User Pairing Scheme for Functional Decode-and-Forward Multi-way Relay Network

    Full text link
    In this paper, we consider a functional decode and forward (FDF) multi-way relay network (MWRN) where a common user facilitates each user in the network to obtain messages from all other users. We propose a novel user pairing scheme, which is based on the principle of selecting a common user with the best average channel gain. This allows the user with the best channel conditions to contribute to the overall system performance. Assuming lattice code based transmissions, we derive upper bounds on the average common rate and the average sum rate with the proposed pairing scheme. Considering M-ary quadrature amplitude modulation with square constellation as a special case of lattice code transmission, we derive asymptotic average symbol error rate (SER) of the MWRN. We show that in terms of the achievable rates, the proposed pairing scheme outperforms the existing pairing schemes under a wide range of channel scenarios. The proposed pairing scheme also has lower average SER compared to existing schemes. We show that overall, the MWRN performance with the proposed pairing scheme is more robust, compared to existing pairing schemes, especially under worst case channel conditions when majority of users have poor average channel gains.Comment: 30 pages, 6 figures, submitted for journal publicatio
    corecore