2,419 research outputs found

    Security and Privacy Issues in Wireless Mesh Networks: A Survey

    Full text link
    This book chapter identifies various security threats in wireless mesh network (WMN). Keeping in mind the critical requirement of security and user privacy in WMNs, this chapter provides a comprehensive overview of various possible attacks on different layers of the communication protocol stack for WMNs and their corresponding defense mechanisms. First, it identifies the security vulnerabilities in the physical, link, network, transport, application layers. Furthermore, various possible attacks on the key management protocols, user authentication and access control protocols, and user privacy preservation protocols are presented. After enumerating various possible attacks, the chapter provides a detailed discussion on various existing security mechanisms and protocols to defend against and wherever possible prevent the possible attacks. Comparative analyses are also presented on the security schemes with regards to the cryptographic schemes used, key management strategies deployed, use of any trusted third party, computation and communication overhead involved etc. The chapter then presents a brief discussion on various trust management approaches for WMNs since trust and reputation-based schemes are increasingly becoming popular for enforcing security in wireless networks. A number of open problems in security and privacy issues for WMNs are subsequently discussed before the chapter is finally concluded.Comment: 62 pages, 12 figures, 6 tables. This chapter is an extension of the author's previous submission in arXiv submission: arXiv:1102.1226. There are some text overlaps with the previous submissio

    An Elliptic Curve-based Signcryption Scheme with Forward Secrecy

    Full text link
    An elliptic curve-based signcryption scheme is introduced in this paper that effectively combines the functionalities of digital signature and encryption, and decreases the computational costs and communication overheads in comparison with the traditional signature-then-encryption schemes. It simultaneously provides the attributes of message confidentiality, authentication, integrity, unforgeability, non-repudiation, public verifiability, and forward secrecy of message confidentiality. Since it is based on elliptic curves and can use any fast and secure symmetric algorithm for encrypting messages, it has great advantages to be used for security establishments in store-and-forward applications and when dealing with resource-constrained devices.Comment: 13 Pages, 5 Figures, 2 Table

    Securing Information-Centric Networking without negating Middleboxes

    Full text link
    Information-Centric Networking is a promising networking paradigm that overcomes many of the limitations of current networking architectures. Various research efforts investigate solutions for securing ICN. Nevertheless, most of these solutions relax security requirements in favor of network performance. In particular, they weaken end-user privacy and the architecture's tolerance to security breaches in order to support middleboxes that offer services such as caching and content replication. In this paper, we adapt TLS, a widely used security standard, to an ICN context. We design solutions that allow session reuse and migration among multiple stakeholders and we propose an extension that allows authorized middleboxes to lawfully and transparently intercept secured communications.Comment: 8th IFIP International Conference on New Technologies, Mobility & Security, IFIP, 201

    A Multi-User, Single-Authentication Protocol for Smart Grid Architectures

    Get PDF
    open access articleIn a smart grid system, the utility server collects data from various smart grid devices. These data play an important role in the energy distribution and balancing between the energy providers and energy consumers. However, these data are prone to tampering attacks by an attacker, while traversing from the smart grid devices to the utility servers, which may result in energy disruption or imbalance. Thus, an authentication is mandatory to efficiently authenticate the devices and the utility servers and avoid tampering attacks. To this end, a group authentication algorithm is proposed for preserving demand–response security in a smart grid. The proposed mechanism also provides a fine-grained access control feature where the utility server can only access a limited number of smart grid devices. The initial authentication between the utility server and smart grid device in a group involves a single public key operation, while the subsequent authentications with the same device or other devices in the same group do not need a public key operation. This reduces the overall computation and communication overheads and takes less time to successfully establish a secret session key, which is used to exchange sensitive information over an unsecured wireless channel. The resilience of the proposed algorithm is tested against various attacks using formal and informal security analysis

    An authentication framework for Wireless Sensor Networks using identity-based signatures

    Get PDF
    In Wireless Sensor Networks (WSNs), authentication is a crucial security requirement to avoid attacks against secure communication, and to mitigate DoS attacks exploiting the limited resources of sensor nodes. Resource constraints of sensor nodes are hurdles in applying strong public key cryptographic based mechanisms in WSNs. To address the problem of authentication in WSNs, we propose an efficient and secure framework for authenticated broadcast/multicast by sensor nodes as well as for outside user authentication, which utilizes identity based cryptography and online/offline signature schemes. The primary goals of this framework are to enable all sensor nodes in the network, firstly, to broadcast and/or multicast an authenticated message quickly; secondly, to verify the broadcast/multicast message sender and the message contents; and finally, to verify the legitimacy of an outside user. The proposed framework is also evaluated using the most efficient and secure identity-based signature schemes
    • …
    corecore