5 research outputs found

    A Complete Characterization of the Gap between Convexity and SOS-Convexity

    Full text link
    Our first contribution in this paper is to prove that three natural sum of squares (sos) based sufficient conditions for convexity of polynomials, via the definition of convexity, its first order characterization, and its second order characterization, are equivalent. These three equivalent algebraic conditions, henceforth referred to as sos-convexity, can be checked by semidefinite programming whereas deciding convexity is NP-hard. If we denote the set of convex and sos-convex polynomials in nn variables of degree dd with C~n,d\tilde{C}_{n,d} and ΣC~n,d\tilde{\Sigma C}_{n,d} respectively, then our main contribution is to prove that C~n,d=ΣC~n,d\tilde{C}_{n,d}=\tilde{\Sigma C}_{n,d} if and only if n=1n=1 or d=2d=2 or (n,d)=(2,4)(n,d)=(2,4). We also present a complete characterization for forms (homogeneous polynomials) except for the case (n,d)=(3,4)(n,d)=(3,4) which is joint work with G. Blekherman and is to be published elsewhere. Our result states that the set Cn,dC_{n,d} of convex forms in nn variables of degree dd equals the set ΣCn,d\Sigma C_{n,d} of sos-convex forms if and only if n=2n=2 or d=2d=2 or (n,d)=(3,4)(n,d)=(3,4). To prove these results, we present in particular explicit examples of polynomials in C~2,6∖ΣC~2,6\tilde{C}_{2,6}\setminus\tilde{\Sigma C}_{2,6} and C~3,4∖ΣC~3,4\tilde{C}_{3,4}\setminus\tilde{\Sigma C}_{3,4} and forms in C3,6∖ΣC3,6C_{3,6}\setminus\Sigma C_{3,6} and C4,4∖ΣC4,4C_{4,4}\setminus\Sigma C_{4,4}, and a general procedure for constructing forms in Cn,d+2∖ΣCn,d+2C_{n,d+2}\setminus\Sigma C_{n,d+2} from nonnegative but not sos forms in nn variables and degree dd. Although for disparate reasons, the remarkable outcome is that convex polynomials (resp. forms) are sos-convex exactly in cases where nonnegative polynomials (resp. forms) are sums of squares, as characterized by Hilbert.Comment: 25 pages; minor editorial revisions made; formal certificates for computer assisted proofs of the paper added to arXi

    NP-hardness of Deciding Convexity of Quartic Polynomials and Related Problems

    Get PDF
    We show that unless P=NP, there exists no polynomial time (or even pseudo-polynomial time) algorithm that can decide whether a multivariate polynomial of degree four (or higher even degree) is globally convex. This solves a problem that has been open since 1992 when N. Z. Shor asked for the complexity of deciding convexity for quartic polynomials. We also prove that deciding strict convexity, strong convexity, quasiconvexity, and pseudoconvexity of polynomials of even degree four or higher is strongly NP-hard. By contrast, we show that quasiconvexity and pseudoconvexity of odd degree polynomials can be decided in polynomial time.Comment: 20 page

    Establishing convexity of polynomial Lyapunov functions and their sublevel sets

    No full text
    There has been renewed interest in the use of polynomial and homogeneous polynomial Lyapunov functions for addressing stability and performance issues in systems and control theory. However, no condition is yet available to establish the convexity of these functions and the convexity of their sublevel sets, properties that can be useful in many applications. In this paper, new conditions for establishing these convexity properties are proposed, which can be handled through convex linear matrix inequalities optimizations by means of sum-of-squares relaxations. © 2008 IEEE.link_to_subscribed_fulltex
    corecore