1,607 research outputs found

    Escaping Saddle Points with Adaptive Gradient Methods

    Full text link
    Adaptive methods such as Adam and RMSProp are widely used in deep learning but are not well understood. In this paper, we seek a crisp, clean and precise characterization of their behavior in nonconvex settings. To this end, we first provide a novel view of adaptive methods as preconditioned SGD, where the preconditioner is estimated in an online manner. By studying the preconditioner on its own, we elucidate its purpose: it rescales the stochastic gradient noise to be isotropic near stationary points, which helps escape saddle points. Furthermore, we show that adaptive methods can efficiently estimate the aforementioned preconditioner. By gluing together these two components, we provide the first (to our knowledge) second-order convergence result for any adaptive method. The key insight from our analysis is that, compared to SGD, adaptive methods escape saddle points faster, and can converge faster overall to second-order stationary points.Comment: Update Theorem 4.1 and proof to use martingale concentration bounds, i.e. matrix Freedma

    Second-Order Optimization for Non-Convex Machine Learning: An Empirical Study

    Full text link
    While first-order optimization methods such as stochastic gradient descent (SGD) are popular in machine learning (ML), they come with well-known deficiencies, including relatively-slow convergence, sensitivity to the settings of hyper-parameters such as learning rate, stagnation at high training errors, and difficulty in escaping flat regions and saddle points. These issues are particularly acute in highly non-convex settings such as those arising in neural networks. Motivated by this, there has been recent interest in second-order methods that aim to alleviate these shortcomings by capturing curvature information. In this paper, we report detailed empirical evaluations of a class of Newton-type methods, namely sub-sampled variants of trust region (TR) and adaptive regularization with cubics (ARC) algorithms, for non-convex ML problems. In doing so, we demonstrate that these methods not only can be computationally competitive with hand-tuned SGD with momentum, obtaining comparable or better generalization performance, but also they are highly robust to hyper-parameter settings. Further, in contrast to SGD with momentum, we show that the manner in which these Newton-type methods employ curvature information allows them to seamlessly escape flat regions and saddle points.Comment: 21 pages, 11 figures. Restructure the paper and add experiment

    Population Descent: A Natural-Selection Based Hyper-Parameter Tuning Framework

    Full text link
    First-order gradient descent has been the base of the most successful optimization algorithms ever implemented. On supervised learning problems with very high dimensionality, such as neural network optimization, it is almost always the algorithm of choice, mainly due to its memory and computational efficiency. However, it is a classical result in optimization that gradient descent converges to local minima on non-convex functions. Even more importantly, in certain high-dimensional cases, escaping the plateaus of large saddle points becomes intractable. On the other hand, black-box optimization methods are not sensitive to the local structure of a loss function's landscape but suffer the curse of dimensionality. Instead, memetic algorithms aim to combine the benefits of both. Inspired by this, we present Population Descent, a memetic algorithm focused on hyperparameter optimization. We show that an adaptive m-elitist selection approach combined with a normalized-fitness-based randomization scheme outperforms more complex state-of-the-art algorithms by up to 13% on common benchmark tasks

    A Generic Approach for Escaping Saddle points

    Full text link
    A central challenge to using first-order methods for optimizing nonconvex problems is the presence of saddle points. First-order methods often get stuck at saddle points, greatly deteriorating their performance. Typically, to escape from saddles one has to use second-order methods. However, most works on second-order methods rely extensively on expensive Hessian-based computations, making them impractical in large-scale settings. To tackle this challenge, we introduce a generic framework that minimizes Hessian based computations while at the same time provably converging to second-order critical points. Our framework carefully alternates between a first-order and a second-order subroutine, using the latter only close to saddle points, and yields convergence results competitive to the state-of-the-art. Empirical results suggest that our strategy also enjoys a good practical performance

    On the Global Convergence of Continuous-Time Stochastic Heavy-Ball Method for Nonconvex Optimization

    Full text link
    We study the convergence behavior of the stochastic heavy-ball method with a small stepsize. Under a change of time scale, we approximate the discrete method by a stochastic differential equation that models small random perturbations of a coupled system of nonlinear oscillators. We rigorously show that the perturbed system converges to a local minimum in a logarithmic time. This indicates that for the diffusion process that approximates the stochastic heavy-ball method, it takes (up to a logarithmic factor) only a linear time of the square root of the inverse stepsize to escape from all saddle points. This results may suggest a fast convergence of its discrete-time counterpart. Our theoretical results are validated by numerical experiments.Comment: accepted at IEEE International Conference on Big Data in 201
    • …
    corecore