88,226 research outputs found

    Mechanical Systems with Symmetry, Variational Principles, and Integration Algorithms

    Get PDF
    This paper studies variational principles for mechanical systems with symmetry and their applications to integration algorithms. We recall some general features of how to reduce variational principles in the presence of a symmetry group along with general features of integration algorithms for mechanical systems. Then we describe some integration algorithms based directly on variational principles using a discretization technique of Veselov. The general idea for these variational integrators is to directly discretize Hamiltonā€™s principle rather than the equations of motion in a way that preserves the original systems invariants, notably the symplectic form and, via a discrete version of Noetherā€™s theorem, the momentum map. The resulting mechanical integrators are second-order accurate, implicit, symplectic-momentum algorithms. We apply these integrators to the rigid body and the double spherical pendulum to show that the techniques are competitive with existing integrators

    On Meshfree GFDM Solvers for the Incompressible Navier-Stokes Equations

    Full text link
    Meshfree solution schemes for the incompressible Navier--Stokes equations are usually based on algorithms commonly used in finite volume methods, such as projection methods, SIMPLE and PISO algorithms. However, drawbacks of these algorithms that are specific to meshfree methods have often been overlooked. In this paper, we study the drawbacks of conventionally used meshfree Generalized Finite Difference Method~(GFDM) schemes for Lagrangian incompressible Navier-Stokes equations, both operator splitting schemes and monolithic schemes. The major drawback of most of these schemes is inaccurate local approximations to the mass conservation condition. Further, we propose a new modification of a commonly used monolithic scheme that overcomes these problems and shows a better approximation for the velocity divergence condition. We then perform a numerical comparison which shows the new monolithic scheme to be more accurate than existing schemes

    Algorithms and Data Structures for Multi-Adaptive Time-Stepping

    Full text link
    Multi-adaptive Galerkin methods are extensions of the standard continuous and discontinuous Galerkin methods for the numerical solution of initial value problems for ordinary or partial differential equations. In particular, the multi-adaptive methods allow individual and adaptive time steps to be used for different components or in different regions of space. We present algorithms for efficient multi-adaptive time-stepping, including the recursive construction of time slabs and adaptive time step selection. We also present data structures for efficient storage and interpolation of the multi-adaptive solution. The efficiency of the proposed algorithms and data structures is demonstrated for a series of benchmark problems.Comment: ACM Transactions on Mathematical Software 35(3), 24 pages (2008

    Geodesics in Heat

    Full text link
    We introduce the heat method for computing the shortest geodesic distance to a specified subset (e.g., point or curve) of a given domain. The heat method is robust, efficient, and simple to implement since it is based on solving a pair of standard linear elliptic problems. The method represents a significant breakthrough in the practical computation of distance on a wide variety of geometric domains, since the resulting linear systems can be prefactored once and subsequently solved in near-linear time. In practice, distance can be updated via the heat method an order of magnitude faster than with state-of-the-art methods while maintaining a comparable level of accuracy. We provide numerical evidence that the method converges to the exact geodesic distance in the limit of refinement; we also explore smoothed approximations of distance suitable for applications where more regularity is required
    • ā€¦
    corecore