2 research outputs found

    An artificial neural network approach for modelling the ward atmosphere in a medical unit

    Get PDF
    Artificial neural networks (ANNs) have been developed, implemented and tested on the basis of a four-year-long experimental data set, with the aim of analyzing the performance and clinical outcome of an existing medical ward, and predicting the effects that possible readjustments and/or interventions on the structure may produce on it. Advantages of the ANN technique over more traditional mathematical models are twofold: on one hand, this approach deals quite naturally with a large number of parameters/variables, and also allows to identify those variables which do not play a crucial role in the system dynamics; on the other hand, the implemented ANN can be more easily used by a staff of non-mathematicians in the unit, as an on-site predictive tool. As such, the ANN model is particularly suitable for the case study. The predictions from the ANN technique are then compared and contrasted with those obtained from a generalized kinetic approach previously proposed and tested by the authors. The comparison on the two case periods shows the ANN predictions to be somewhat closer to the experimental values. However, the mean deviations and the analysis of the statistical coefficients over a span of multiple years suggest the kinetic model to be more reliable in the long run, i.e., its predictions can be considered as acceptable even on periods that are quite far away from the two case periods over which the many parameters of the model had been optimized. The approach under study, referring to paradigms and methods of physical and mathematical models integrated with psychosocial sciences, has good chances of gaining the attention of the scientific community in both areas, and hence of eventually obtaining wider diffusion and generalization.

    Improving the profitability, availability and condition monitoring of FPSO terminals

    Get PDF
    The main focus of this study is to improve the profitability, availability and condition monitoring of Liquefied Natural Gas (LNG) Floating Production Storage and Offloading platforms (FPSOs). Propane pre-cooled, mixed refrigerant (C3MR) liquefaction is the key process in the production of LNG on FPSOs. LNG liquefaction system equipment has the highest failure rates among the other FPSO equipment, and thus the highest maintenance cost. Improvements in the profitability, availability and condition monitoring were made in two ways: firstly, by making recommendations for the use of redundancy in order to improve system reliability (and hence availability); and secondly, by developing an effective condition-monitoring algorithm that can be used as part of a condition-based maintenance system. C3MR liquefaction system reliability modelling was undertaken using the time-dependent Markov approach. Four different system options were studied, with varying degrees of redundancy. The results of the reliability analysis indicated that the introduction of a standby liquefaction system could be the best option for liquefaction plants in terms of reliability, availability and profitability; this is because the annual profits of medium-sized FPSOs (3MTPA) were estimated to increase by approximately US296million,risingfromaboutUS296 million, rising from about US1,190 million to US1,485.98million,ifredundancywereimplemented.Thecost−benefitanalysisresultswerebasedontheaverageLNGprices(US1,485.98 million, if redundancy were implemented. The cost-benefit analysis results were based on the average LNG prices (US500/ton) in 2013 and 2014. Typically, centrifugal turbines, compressors and blowers are the main items of equipment in LNG liquefaction plants. Because centrifugal equipment tops the FPSO equipment failure list, a Condition Monitoring (CM) system for such equipment was proposed and tested to reduce maintenance and shutdown costs, and also to reduce flaring. The proposed CM system was based on a novel FFT-based segmentation, feature selection and fault identification algorithm. A 20 HP industrial air compressor system with a rotational speed of 15,650 RPM was utilised to experimentally emulate five different typical centrifugal equipment machine conditions in the laboratory; this involved training and testing the proposed algorithm with a total of 105 datasets. The fault diagnosis performance of the algorithm was compared with other methods, namely standard FFT classifiers and Neural Network. A sensitivity analysis was performed in order to determine the effect of the time length and position of the signals on the diagnostic performance of the proposed fault identification algorithm. The algorithm was also checked for its ability to identify machine degradation using datasets for which the algorithm was not trained. Moreover, a characterisation table that prioritises the different fault detection techniques and signal features for the diagnosis of centrifugal equipment faults, was introduced to determine the best fault identification technique and signal feature. The results suggested that the proposed automated feature selection and fault identification algorithm is effective and competitive as it yielded a fault identification performance of 100% in 3.5 seconds only in comparison to 57.2 seconds for NN. The sensitivity analysis showed that the algorithm is robust as its fault identification performance was affected by neither the time length nor the position of signals. The characterisation study demonstrated the effectiveness of the AE spectral feature technique over the fault identification techniques and signal features tested in the course of diagnosing centrifugal equipment faults. Moreover, the algorithm performed well in the identification of machine degradation. In summary, the results of this study indicate that the proposed two-pronged approach has the potential to yield a highly reliable LNG liquefaction system with significantly improved availability and profitability profiles
    corecore