137,625 research outputs found
Some Applications of Coding Theory in Computational Complexity
Error-correcting codes and related combinatorial constructs play an important
role in several recent (and old) results in computational complexity theory. In
this paper we survey results on locally-testable and locally-decodable
error-correcting codes, and their applications to complexity theory and to
cryptography.
Locally decodable codes are error-correcting codes with sub-linear time
error-correcting algorithms. They are related to private information retrieval
(a type of cryptographic protocol), and they are used in average-case
complexity and to construct ``hard-core predicates'' for one-way permutations.
Locally testable codes are error-correcting codes with sub-linear time
error-detection algorithms, and they are the combinatorial core of
probabilistically checkable proofs
Systematic Error-Correcting Codes for Rank Modulation
The rank-modulation scheme has been recently proposed for efficiently storing
data in nonvolatile memories. Error-correcting codes are essential for rank
modulation, however, existing results have been limited. In this work we
explore a new approach, \emph{systematic error-correcting codes for rank
modulation}. Systematic codes have the benefits of enabling efficient
information retrieval and potentially supporting more efficient encoding and
decoding procedures. We study systematic codes for rank modulation under
Kendall's -metric as well as under the -metric.
In Kendall's -metric we present -systematic codes for
correcting one error, which have optimal rates, unless systematic perfect codes
exist. We also study the design of multi-error-correcting codes, and provide
two explicit constructions, one resulting in systematic codes
with redundancy at most . We use non-constructive arguments to show the
existence of -systematic codes for general parameters. Furthermore,
we prove that for rank modulation, systematic codes achieve the same capacity
as general error-correcting codes.
Finally, in the -metric we construct two systematic
multi-error-correcting codes, the first for the case of , and the
second for . In the latter case, the codes have the same
asymptotic rate as the best codes currently known in this metric
Systematic Codes for Rank Modulation
The goal of this paper is to construct systematic error-correcting codes for
permutations and multi-permutations in the Kendall's -metric. These codes
are important in new applications such as rank modulation for flash memories.
The construction is based on error-correcting codes for multi-permutations and
a partition of the set of permutations into error-correcting codes. For a given
large enough number of information symbols , and for any integer , we
present a construction for systematic -error-correcting codes,
for permutations from , with less redundancy symbols than the number
of redundancy symbols in the codes of the known constructions. In particular,
for a given and for sufficiently large we can obtain . The same
construction is also applied to obtain related systematic error-correcting
codes for multi-permutations.Comment: to be presented ISIT201
Quantum Error Correction and Orthogonal Geometry
A group theoretic framework is introduced that simplifies the description of
known quantum error-correcting codes and greatly facilitates the construction
of new examples. Codes are given which map 3 qubits to 8 qubits correcting 1
error, 4 to 10 qubits correcting 1 error, 1 to 13 qubits correcting 2 errors,
and 1 to 29 qubits correcting 5 errors.Comment: RevTex, 4 pages, no figures, submitted to Phys. Rev. Letters. We have
changed the statement of Theorem 2 to correct it -- we now get worse rates
than we previously claimed for our quantum codes. Minor changes have been
made to the rest of the pape
Asymmetric quantum error correcting codes
The noise in physical qubits is fundamentally asymmetric: in most devices,
phase errors are much more probable than bit flips. We propose a quantum error
correcting code which takes advantage of this asymmetry and shows good
performance at a relatively small cost in redundancy, requiring less than a
doubling of the number of physical qubits for error correction
- …
