7,426 research outputs found

    On sharp performance bounds for robust sparse signal recoveries

    Get PDF
    It is well known in compressive sensing that l_1 minimization can recover the sparsest solution for a large class of underdetermined systems of linear equations, provided the signal is sufficiently sparse. In this paper, we compute sharp performance bounds for several different notions of robustness in sparse signal recovery via l_1 minimization. In particular, we determine necessary and sufficient conditions for the measurement matrix A under which l_1 minimization guarantees the robustness of sparse signal recovery in the "weak", "sectional" and "strong" (e.g., robustness for "almost all" approximately sparse signals, or instead for "all" approximately sparse signals). Based on these characterizations, we are able to compute sharp performance bounds on the tradeoff between signal sparsity and signal recovery robustness in these various senses. Our results are based on a high-dimensional geometrical analysis of the null-space of the measurement matrix A. These results generalize the thresholds results for purely sparse signals and also present generalized insights on l_1 minimization for recovering purely sparse signals from a null-space perspective

    Statistical mechanics of error exponents for error-correcting codes

    Full text link
    Error exponents characterize the exponential decay, when increasing message length, of the probability of error of many error-correcting codes. To tackle the long standing problem of computing them exactly, we introduce a general, thermodynamic, formalism that we illustrate with maximum-likelihood decoding of low-density parity-check (LDPC) codes on the binary erasure channel (BEC) and the binary symmetric channel (BSC). In this formalism, we apply the cavity method for large deviations to derive expressions for both the average and typical error exponents, which differ by the procedure used to select the codes from specified ensembles. When decreasing the noise intensity, we find that two phase transitions take place, at two different levels: a glass to ferromagnetic transition in the space of codewords, and a paramagnetic to glass transition in the space of codes.Comment: 32 pages, 13 figure

    Channel Detection in Coded Communication

    Full text link
    We consider the problem of block-coded communication, where in each block, the channel law belongs to one of two disjoint sets. The decoder is aimed to decode only messages that have undergone a channel from one of the sets, and thus has to detect the set which contains the prevailing channel. We begin with the simplified case where each of the sets is a singleton. For any given code, we derive the optimum detection/decoding rule in the sense of the best trade-off among the probabilities of decoding error, false alarm, and misdetection, and also introduce sub-optimal detection/decoding rules which are simpler to implement. Then, various achievable bounds on the error exponents are derived, including the exact single-letter characterization of the random coding exponents for the optimal detector/decoder. We then extend the random coding analysis to general sets of channels, and show that there exists a universal detector/decoder which performs asymptotically as well as the optimal detector/decoder, when tuned to detect a channel from a specific pair of channels. The case of a pair of binary symmetric channels is discussed in detail.Comment: Submitted to IEEE Transactions on Information Theor

    Non-universality of elastic exponents in random bond-bending networks

    Full text link
    We numerically investigate the rigidity percolation transition in two-dimensional flexible, random rod networks with freely rotating cross-links. Near the transition, networks are dominated by bending modes and the elastic modulii vanish with an exponent f=3.0\pm0.2, in contrast with central force percolation which shares the same geometric exponents. This indicates that universality for geometric quantities does not imply universality for elastic ones. The implications of this result for actin-fiber networks is discussed.Comment: 4 pages, 3 figures, minor clarifications and amendments. To appear in PRE Rap. Com

    Parallel sparse interpolation using small primes

    Full text link
    To interpolate a supersparse polynomial with integer coefficients, two alternative approaches are the Prony-based "big prime" technique, which acts over a single large finite field, or the more recently-proposed "small primes" technique, which reduces the unknown sparse polynomial to many low-degree dense polynomials. While the latter technique has not yet reached the same theoretical efficiency as Prony-based methods, it has an obvious potential for parallelization. We present a heuristic "small primes" interpolation algorithm and report on a low-level C implementation using FLINT and MPI.Comment: Accepted to PASCO 201

    Random Subsets of Structured Deterministic Frames have MANOVA Spectra

    Full text link
    We draw a random subset of kk rows from a frame with nn rows (vectors) and mm columns (dimensions), where kk and mm are proportional to nn. For a variety of important deterministic equiangular tight frames (ETFs) and tight non-ETF frames, we consider the distribution of singular values of the kk-subset matrix. We observe that for large nn they can be precisely described by a known probability distribution -- Wachter's MANOVA spectral distribution, a phenomenon that was previously known only for two types of random frames. In terms of convergence to this limit, the kk-subset matrix from all these frames is shown to be empirically indistinguishable from the classical MANOVA (Jacobi) random matrix ensemble. Thus empirically the MANOVA ensemble offers a universal description of the spectra of randomly selected kk-subframes, even those taken from deterministic frames. The same universality phenomena is shown to hold for notable random frames as well. This description enables exact calculations of properties of solutions for systems of linear equations based on a random choice of kk frame vectors out of nn possible vectors, and has a variety of implications for erasure coding, compressed sensing, and sparse recovery. When the aspect ratio m/nm/n is small, the MANOVA spectrum tends to the well known Marcenko-Pastur distribution of the singular values of a Gaussian matrix, in agreement with previous work on highly redundant frames. Our results are empirical, but they are exhaustive, precise and fully reproducible

    Rank Minimization over Finite Fields: Fundamental Limits and Coding-Theoretic Interpretations

    Full text link
    This paper establishes information-theoretic limits in estimating a finite field low-rank matrix given random linear measurements of it. These linear measurements are obtained by taking inner products of the low-rank matrix with random sensing matrices. Necessary and sufficient conditions on the number of measurements required are provided. It is shown that these conditions are sharp and the minimum-rank decoder is asymptotically optimal. The reliability function of this decoder is also derived by appealing to de Caen's lower bound on the probability of a union. The sufficient condition also holds when the sensing matrices are sparse - a scenario that may be amenable to efficient decoding. More precisely, it is shown that if the n\times n-sensing matrices contain, on average, \Omega(nlog n) entries, the number of measurements required is the same as that when the sensing matrices are dense and contain entries drawn uniformly at random from the field. Analogies are drawn between the above results and rank-metric codes in the coding theory literature. In fact, we are also strongly motivated by understanding when minimum rank distance decoding of random rank-metric codes succeeds. To this end, we derive distance properties of equiprobable and sparse rank-metric codes. These distance properties provide a precise geometric interpretation of the fact that the sparse ensemble requires as few measurements as the dense one. Finally, we provide a non-exhaustive procedure to search for the unknown low-rank matrix.Comment: Accepted to the IEEE Transactions on Information Theory; Presented at IEEE International Symposium on Information Theory (ISIT) 201
    • …
    corecore