14 research outputs found

    БарицСнтричСскиС ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ ΠŸΡƒΠ°ΡΡΠΎΠ½Π° β€” Π ΠΈΠΌΠ°Π½Π°

    Get PDF
    The article deals with the problem of finding barycentric coordinates for arbitrary, simply connected, closed, discrete regions that are defined in and . Barycentric coordinates are given by a set of scalar parameters that unambiguously define a point of the affine space inside a simply connected, closed, discrete region through a specified point basis, which is given by the vertices of the region. Barycentriс coordinates being defined for the simply connected, closed, discrete region are harmonic and satisfy the properties of affine invariance, positive definiteness and equality to unit. The solution is based on the Riemann theorem on the uniqueness of conformal mapping and the Poisson integral formula for the ball. The paper shows the examples of approximation of the potential inside arbitrary, simply connected, closed, discrete regions using the proposed method, compared with the approximation using the finite element method.Π’ ΡΡ‚Π°Ρ‚ΡŒΠ΅ Π²Ρ‹ΠΏΠΎΠ»Π½Π΅Π½ΠΎ Ρ€Π΅ΡˆΠ΅Π½ΠΈΠ΅ Π·Π°Π΄Π°Ρ‡ΠΈ нахоТдСния барицСнтричСских ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ для ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ»ΡŒΠ½Ρ‹Ρ… односвязных Π·Π°ΠΌΠΊΠ½ΡƒΡ‚Ρ‹Ρ… дискрСтных областСй, Π·Π°Π΄Π°Π½Π½Ρ‹Ρ… Π² ΠΈ . БарицСнтричСскиС ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Π·Π°Π΄Π°ΡŽΡ‚ΡΡ Π½Π°Π±ΠΎΡ€ΠΎΠΌ скалярных ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ², ΠΎΠ΄Π½ΠΎΠ·Π½Π°Ρ‡Π½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΡΡŽΡ‰ΠΈΡ… Ρ‚ΠΎΡ‡ΠΊΡƒ Π°Ρ„Ρ„ΠΈΠ½Π½ΠΎΠ³ΠΎ пространства Π²Π½ΡƒΡ‚Ρ€ΠΈ односвязной Π·Π°ΠΌΠΊΠ½ΡƒΡ‚ΠΎΠΉ дискрСтной области Ρ‡Π΅Ρ€Π΅Π· Π·Π°Π΄Π°Π½Π½Ρ‹ΠΉ Ρ‚ΠΎΡ‡Π΅Ρ‡Π½Ρ‹ΠΉ базис. Π’ΠΎΡ‡Π΅Ρ‡Π½Ρ‹ΠΉ базис задаСтся Π²Π΅Ρ€ΡˆΠΈΠ½Π°ΠΌΠΈ односвязной Π·Π°ΠΌΠΊΠ½ΡƒΡ‚ΠΎΠΉ дискрСтной области. ΠžΠΏΡ€Π΅Π΄Π΅Π»ΡΠ΅ΠΌΡ‹Π΅ барицСнтричСскиС ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ для односвязной Π·Π°ΠΌΠΊΠ½ΡƒΡ‚ΠΎΠΉ дискрСтной области ΡΠ²Π»ΡΡŽΡ‚ΡΡ гармоничСскими ΠΈ ΡƒΠ΄ΠΎΠ²Π»Π΅Ρ‚Π²ΠΎΡ€ΡΡŽΡ‚ свойствам Π°Ρ„Ρ„ΠΈΠ½Π½ΠΎΠΉ инвариантности, ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΉ опрСдСлСнности ΠΈ равСнствС Π΅Π΄ΠΈΠ½ΠΈΡ†Π΅. РСшСниС основано Π½Π° Ρ‚Π΅ΠΎΡ€Π΅ΠΌΠ΅ Π ΠΈΠΌΠ°Π½Π° ΠΎ СдинствСнности ΠΊΠΎΠ½Ρ„ΠΎΡ€ΠΌΠ½ΠΎΠ³ΠΎ отобраТСния ΠΈ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»ΡŒΠ½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ ΠŸΡƒΠ°ΡΡΠΎΠ½Π° для ΡˆΠ°Ρ€Π°. ΠŸΡ€ΠΈΠ²Π΅Π΄Π΅Π½Ρ‹ ΠΏΡ€ΠΈΠΌΠ΅Ρ€Ρ‹ аппроксимации ΠΏΠΎΡ‚Π΅Π½Ρ†ΠΈΠ°Π»Π° Π²Π½ΡƒΡ‚Ρ€ΠΈ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ»ΡŒΠ½Ρ‹Ρ… односвязных Π·Π°ΠΌΠΊΠ½ΡƒΡ‚Ρ‹Ρ… дискрСтных областСй ΠΏΠΎ ΠΏΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½Π½ΠΎΠΌΡƒ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρƒ Π² сравнСнии с аппроксимациСй ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ ΠΊΠΎΠ½Π΅Ρ‡Π½Ρ‹Ρ… элСмСнтов

    Addressing Integration Error for Polygonal Finite Elements Through Polynomial Projections: A Patch Test Connection

    Full text link
    Polygonal finite elements generally do not pass the patch test as a result of quadrature error in the evaluation of weak form integrals. In this work, we examine the consequences of lack of polynomial consistency and show that it can lead to a deterioration of convergence of the finite element solutions. We propose a general remedy, inspired by techniques in the recent literature of mimetic finite differences, for restoring consistency and thereby ensuring the satisfaction of the patch test and recovering optimal rates of convergence. The proposed approach, based on polynomial projections of the basis functions, allows for the use of moderate number of integration points and brings the computational cost of polygonal finite elements closer to that of the commonly used linear triangles and bilinear quadrilaterals. Numerical studies of a two-dimensional scalar diffusion problem accompany the theoretical considerations
    corecore