3,944 research outputs found

    Stabilised finite element methods for ill-posed problems with conditional stability

    Full text link
    In this paper we discuss the adjoint stabilised finite element method introduced in, E. Burman, Stabilized finite element methods for nonsymmetric, noncoercive and ill-posed problems. Part I: elliptic equations, SIAM Journal on Scientific Computing, and how it may be used for the computation of solutions to problems for which the standard stability theory given by the Lax-Milgram Lemma or the Babuska-Brezzi Theorem fails. We pay particular attention to ill-posed problems that have some conditional stability property and prove (conditional) error estimates in an abstract framework. As a model problem we consider the elliptic Cauchy problem and provide a complete numerical analysis for this case. Some numerical examples are given to illustrate the theory.Comment: Accepted in the proceedings from the EPSRC Durham Symposium Building Bridges: Connections and Challenges in Modern Approaches to Numerical Partial Differential Equation

    From the viscous Cahn-Hilliard equation to a regularized forward-backward parabolic equation

    Full text link
    A rigorous proof is given for the convergence of the solutions of a viscous Cahn-Hilliard system to the solution of the regularized version of the forward-backward parabolic equation, as the coefficient of the diffusive term goes to 0. Non-homogenous Neumann boundary condition are handled for the chemical potential and the subdifferential of a possible non-smooth double-well functional is considered in the equation. An error estimate for the difference of solutions is also proved in a suitable norm and with a specified rate of convergence.Comment: Key words and phrases: Cahn-Hilliard system, forward-backward parabolic equation, viscosity, initial-boundary value problem, asymptotic analysis, well-posednes

    Regularization strategy for inverse problem for 1+1 dimensional wave equation

    Get PDF
    An inverse boundary value problem for a 1+1 dimensional wave equation with wave speed c(x)c(x) is considered. We give a regularisation strategy for inverting the map A:c↦Λ,\mathcal A:c\mapsto \Lambda, where Λ\Lambda is the hyperbolic Neumann-to-Dirichlet map corresponding to the wave speed cc. More precisely, we consider the case when we are given a perturbation of the Neumann-to-Dirichlet map Λ~=Λ+E\tilde \Lambda=\Lambda +\mathcal E , where E\mathcal E corresponds to the measurement errors, and reconstruct an approximate wave speed c~\tilde c. We emphasize that Λ~\tilde \Lambda may not not be in the range of the map A\mathcal A. We show that the reconstructed wave speed c~\tilde c satisfies ∥c~−c∥L∞<C∥E∥1/18\| \tilde c-c\|_{L^\infty}<C \|E\|^{1/18}. Our regularization strategy is based on a new formula to compute cc from Λ\Lambda

    Thermoacoustic tomography with an arbitrary elliptic operator

    Full text link
    Thermoacoustic tomography is a term for the inverse problem of determining of one of initial conditions of a hyperbolic equation from boundary measurements. In the past publications both stability estimates and convergent numerical methods for this problem were obtained only under some restrictive conditions imposed on the principal part of the elliptic operator. In this paper logarithmic stability estimates are obatined for an arbitrary variable principal part of that operator. Convergence of the Quasi-Reversibility Method to the exact solution is also established for this case. Both complete and incomplete data collection cases are considered.Comment: 16 page

    A finite element data assimilation method for the wave equation

    Full text link
    We design a primal-dual stabilized finite element method for the numerical approximation of a data assimilation problem subject to the acoustic wave equation. For the forward problem, piecewise affine, continuous, finite element functions are used for the approximation in space and backward differentiation is used in time. Stabilizing terms are added on the discrete level. The design of these terms is driven by numerical stability and the stability of the continuous problem, with the objective of minimizing the computational error. Error estimates are then derived that are optimal with respect to the approximation properties of the numerical scheme and the stability properties of the continuous problem. The effects of discretizing the (smooth) domain boundary and other perturbations in data are included in the analysis.Comment: 23 page

    A variational method for quantitative photoacoustic tomography with piecewise constant coefficients

    Full text link
    In this article, we consider the inverse problem of determining spatially heterogeneous absorption and diffusion coefficients from a single measurement of the absorbed energy (in the steady-state diffusion approximation of light transfer). This problem, which is central in quantitative photoacoustic tomography, is in general ill-posed since it admits an infinite number of solution pairs. We show that when the coefficients are known to be piecewise constant functions, a unique solution can be obtained. For the numerical determination of the coefficients, we suggest a variational method based based on an Ambrosio-Tortorelli-approximation of a Mumford-Shah-like functional, which we implemented numerically and tested on simulated two-dimensional data
    • …
    corecore