724 research outputs found

    Surface structure and composition determination by low-energy electron scattering and Monte Carlo simulations

    Get PDF
    This thesis reports on surface and surface alloy structural and compositional determination with low-energy electron scattering and Monte Carlo simulations. Low-energy electron diffraction (LEED) technique and the newly developed low-energy electron microscopy (LEEM) IV technique are used to measure the electron scattering intensity spectra and dynamical multiple scattering analysis is performed to optimize the surface structural and non-structural parameters via comparison between the experimental spectra and calculated ones. My work focuses on the following four surface systems. (111), (110) and (001) surface structures of the semimetal bismuth are determined with LEED. The unreconstructed (1x1) structure is revealed for all three surfaces. The interlayer spacings for several outermost layers are resolved. All results agree with those obtained by first-principles calculations. The Debye temperatures for the Bi(111) and Bi(110) surface are found to be lower than that of the Bi bulk. In conjunction with the LEED technique, scanning tunneling microscopy (STM) observation is performed on the Bi(001) surface. Surface topology images show dominant bilayer steps and no single layer step. The newly developed LEEM-IV technique is used to investigate the PdCu surface alloy on the substrate Cu(001). Studies include quantifying the temporal evolution of Pd concentration on the Cu(001) terrace, mapping the 3D heterogeneous surface chemical composition, and identifying a step-overgrowth thin film growth mechanism. It is found that, at the initial deposition stages, Pd atoms reside in the second layer at the sample temperature of 473 K, and the Pd concentration increases exponentially with time. The heterogeneous structure and composition near the steps are found to be a result of the step-overgrowth. We highlight the LEEM-IV technique which provides a high lateral resolution at surfaces. We demonstrate a 3D profile of Pd concentration in the surface region by using the LEEM-IV technique. The reconstructed Si(001)-2x1 surface has been intriguing due to its great scientific and technical significance. Unfortunately, no satisfactory agreement between the LEED experimental and theoretical data have been achieved. Some controversies over this surface, such as the flip-flop dimer dynamics and the ground-state structure, still require further study. Utilizing LEEM to get electron scattering spectra from a single domain, we get a refined asymmetric tilted dimer structure. We investigate the 6H-SiC(0001) surface phase transition in order to ultimately understand the formation of graphene on it. LEEM diffraction data from a large single domain are analyzed for 3x3, 1x1 and 3x3 phases. All the surface structures turn out to have an A bi-layer bulk termination. It is found that the amount of Si at the surface decreases with increased temperature. Adatom-trimer-adlayer model for the 3x3 surface does not give a satisfactory result and more work needs to be done to resolve this structure. A mixed Si-vacancy top-site overlayer on the 1x1 surface is found. A 3x3 overlayer at the T4 registry on the substrate surface generates a best fit between experimental and calculated data

    Propuesta de arquitectura y circuitos para la mejora del rango dinámico de sistemas de visión en un chip diseñados en tecnologías CMOS profundamente submicrométrica

    Get PDF
    El trabajo presentado en esta tesis trata de proponer nuevas técnicas para la expansión del rango dinámico en sensores electrónicos de imagen. En este caso, hemos dirigido nuestros estudios hacia la posibilidad de proveer dicha funcionalidad en un solo chip. Esto es, sin necesitar ningún soporte externo de hardware o software, formando un tipo de sistema denominado Sistema de Visión en un Chip (VSoC). El rango dinámico de los sensores electrónicos de imagen se define como el cociente entre la máxima y la mínima iluminación medible. Para mejorar este factor surgen dos opciones. La primera, reducir la mínima luz medible mediante la disminución del ruido en el sensor de imagen. La segunda, incrementar la máxima luz medible mediante la extensión del límite de saturación del sensor. Cronológicamente, nuestra primera opción para mejorar el rango dinámico se basó en reducir el ruido. Varias opciones se pueden tomar para mejorar la figura de mérito de ruido del sistema: reducir el ruido usando una tecnología CIS o usar circuitos dedicados, tales como calibración o auto cero. Sin embargo, el uso de técnicas de circuitos implica limitaciones, las cuales sólo pueden ser resueltas mediante el uso de tecnologías no estándar que están especialmente diseñadas para este propósito. La tecnología CIS utilizada está dirigida a la mejora de la calidad y las posibilidades del proceso de fotosensado, tales como sensibilidad, ruido, permitir imagen a color, etcétera. Para estudiar las características de la tecnología en más detalle, se diseñó un chip de test, lo cual permite extraer las mejores opciones para futuros píxeles. No obstante, a pesar de un satisfactorio comportamiento general, las medidas referentes al rango dinámico indicaron que la mejora de este mediante sólo tecnología CIS es muy limitada. Es decir, la mejora de la corriente oscura del sensor no es suficiente para nuestro propósito. Para una mayor mejora del rango dinámico se deben incluir circuitos dentro del píxel. No obstante, las tecnologías CIS usualmente no permiten nada más que transistores NMOS al lado del fotosensor, lo cual implica una seria restricción en el circuito a usar. Como resultado, el diseño de un sensor de imagen con mejora del rango dinámico en tecnologías CIS fue desestimado en favor del uso de una tecnología estándar, la cual da más flexibilidad al diseño del píxel. En tecnologías estándar, es posible introducir una alta funcionalidad usando circuitos dentro del píxel, lo cual permite técnicas avanzadas para extender el límite de saturación de los sensores de imagen. Para este objetivo surgen dos opciones: adquisición lineal o compresiva. Si se realiza una adquisición lineal, se generarán una gran cantidad de datos por cada píxel. Como ejemplo, si el rango dinámico de la escena es de 120dB al menos se necesitarían 20-bits/píxel, log2(10120/20)=19.93, para la representación binaria de este rango dinámico. Esto necesitaría de amplios recursos para procesar esta gran cantidad de datos, y un gran ancho de banda para moverlos al circuito de procesamiento. Para evitar estos problemas, los sensores de imagen de alto rango dinámico usualmente optan por utilizar una adquisición compresiva de la luz. Por lo tanto, esto implica dos tareas a realizar: la captura y la compresión de la imagen. La captura de la imagen se realiza a nivel de píxel, en el dispositivo fotosensor, mientras que la compresión de la imagen puede ser realizada a nivel de píxel, de sistema, o mediante postprocesado externo. Usando el postprocesado, existe un campo de investigación que estudia la compresión de escenas de alto rango dinámico mientras se mantienen los detalles, produciendo un resultado apropiado para la percepción humana en monitores convencionales de bajo rango dinámico. Esto se denomina Mapeo de Tonos (Tone Mapping) y usualmente emplea solo 8-bits/píxel para las representaciones de imágenes, ya que éste es el estándar para las imágenes de bajo rango dinámico. Los píxeles de adquisición compresiva, por su parte, realizan una compresión que no es dependiente de la escena de alto rango dinámico a capturar, lo cual implica una baja compresión o pérdida de detalles y contraste. Para evitar estas desventajas, en este trabajo, se presenta un píxel de adquisición compresiva que aplica una técnica de mapeo de tonos que permite la captura de imágenes ya comprimidas de una forma optimizada para mantener los detalles y el contraste, produciendo una cantidad muy reducida de datos. Las técnicas de mapeo de tonos ejecutan normalmente postprocesamiento mediante software en un ordenador sobre imágenes capturadas sin compresión, las cuales contienen una gran cantidad de datos. Estas técnicas han pertenecido tradicionalmente al campo de los gráficos por ordenador debido a la gran cantidad de esfuerzo computacional que requieren. Sin embargo, hemos desarrollado un nuevo algoritmo de mapeo de tonos especialmente adaptado para aprovechar los circuitos dentro del píxel y que requiere un reducido esfuerzo de computación fuera de la matriz de píxeles, lo cual permite el desarrollo de un sistema de visión en un solo chip. El nuevo algoritmo de mapeo de tonos, el cual es un concepto matemático que puede ser simulado mediante software, se ha implementado también en un chip. Sin embargo, para esta implementación hardware en un chip son necesarias algunas adaptaciones y técnicas avanzadas de diseño, que constituyen en sí mismas otra de las contribuciones de este trabajo. Más aún, debido a la nueva funcionalidad, se han desarrollado modificaciones de los típicos métodos a usar para la caracterización y captura de imágenes

    Multiple Particle Positron Emission Particle Tracking and its Application to Flows in Porous Media

    Get PDF
    Positron emission particle tracking (PEPT) is a method for flow interrogation capable of measurement in opaque systems. In this work a novel method for PEPT is introduced that allows for simultaneous tracking of multiple tracers. This method (M-PEPT) is adapted from optical particle tracking techniques and is designed to track an arbitrary number of positron-emitting tracer-particles entering and leaving the field of view of a detector array. M-PEPT is described, and its applicability is demonstrated for a number of measurements ranging from turbulent shear flow interrogation to cell migration. It is found that this method can locate over 80 particles simultaneously with spatial resolution of order 0.2 mm at tracking frequency of 10 Hz and, at lower particle number densities, can achieve similar spatial resolution at tracking frequency 1000 Hz. The method is limited in its ability to resolve particles approaching close to one another, and suggestions for future improvements are made.M-PEPT is used to study flow in porous media constructed from packing of glass beads of different diameters. Anomalous (i.e. non-Fickian) dispersion of tracers is studied in these systems under the continuous time random walk (CTRW) paradigm. Pore-length transition time distributions are measured, and it is found that in all cases, these distributions indicate the presence of long waiting times between transitions, confirming the central assumption of the CTRW model. All systems demonstrate non-Fickian spreading of tracers at early and intermediate times with a late time recovery of Fickian dispersion, but a clear link between transition time distributions and tracer spreading is not made. Velocity increment statistics are examined, and it is found that temporal velocity increments in the mean-flow direction show a universal scaling. Spatial velocity increments also appear to collapse to a similar form, but there is insufficient data to determine the presence of universal scaling

    Color image quality measures and retrieval

    Get PDF
    The focus of this dissertation is mainly on color image, especially on the images with lossy compression. Issues related to color quantization, color correction, color image retrieval and color image quality evaluation are addressed. A no-reference color image quality index is proposed. A novel color correction method applied to low bit-rate JPEG image is developed. A novel method for content-based image retrieval based upon combined feature vectors of shape, texture, and color similarities has been suggested. In addition, an image specific color reduction method has been introduced, which allows a 24-bit JPEG image to be shown in the 8-bit color monitor with 256-color display. The reduction in download and decode time mainly comes from the smart encoder incorporating with the proposed color reduction method after color space conversion stage. To summarize, the methods that have been developed can be divided into two categories: one is visual representation, and the other is image quality measure. Three algorithms are designed for visual representation: (1) An image-based visual representation for color correction on low bit-rate JPEG images. Previous studies on color correction are mainly on color image calibration among devices. Little attention was paid to the compressed image whose color distortion is evident in low bit-rate JPEG images. In this dissertation, a lookup table algorithm is designed based on the loss of PSNR in different compression ratio. (2) A feature-based representation for content-based image retrieval. It is a concatenated vector of color, shape, and texture features from region of interest (ROI). (3) An image-specific 256 colors (8 bits) reproduction for color reduction from 16 millions colors (24 bits). By inserting the proposed color reduction method into a JPEG encoder, the image size could be further reduced and the transmission time is also reduced. This smart encoder enables its decoder using less time in decoding. Three algorithms are designed for image quality measure (IQM): (1) A referenced IQM based upon image representation in very low-dimension. Previous studies on IQMs are based on high-dimensional domain including spatial and frequency domains. In this dissertation, a low-dimensional domain IQM based on random projection is designed, with preservation of the IQM accuracy in high-dimensional domain. (2) A no-reference image blurring metric. Based on the edge gradient, the degree of image blur can be measured. (3) A no-reference color IQM based upon colorfulness, contrast and sharpness

    Dispositivos fotónicos con base sol-gel y de silicio

    Get PDF
    Tesis inédita de la Universidad Complutense de Madrid, Facultad de Ciencias Físicas, Departamento de Óptica, leída el 01/07/2013Depto. de ÓpticaFac. de Ciencias FísicasTRUEunpu

    Space Photovoltaic Research and Technology 1983. High Efficiency, Radiation Damage, and Blanket Technology

    Get PDF
    This three day conference, sixth in a series that began in 1974, was held at the NASA Lewis Research Center on October 18-20, 1983. The conference provided a forum for the discussion of space photovoltaic systems, their research status, and program goals. Papers were presented and workshops were held in a variety of technology areas, including basic cell research, advanced blanket technology, and radiation damage

    CIRCUITS AND ARCHITECTURE FOR BIO-INSPIRED AI ACCELERATORS

    Get PDF
    Technological advances in microelectronics envisioned through Moore’s law have led to powerful processors that can handle complex and computationally intensive tasks. Nonetheless, these advancements through technology scaling have come at an unfavorable cost of significantly larger power consumption, which has posed challenges for data processing centers and computers at scale. Moreover, with the emergence of mobile computing platforms constrained by power and bandwidth for distributed computing, the necessity for more energy-efficient scalable local processing has become more significant. Unconventional Compute-in-Memory architectures such as the analog winner-takes-all associative-memory and the Charge-Injection Device processor have been proposed as alternatives. Unconventional charge-based computation has been employed for neural network accelerators in the past, where impressive energy efficiency per operation has been attained in 1-bit vector-vector multiplications, and in recent work, multi-bit vector-vector multiplications. In the latter, computation was carried out by counting quanta of charge at the thermal noise limit, using packets of about 1000 electrons. These systems are neither analog nor digital in the traditional sense but employ mixed-signal circuits to count the packets of charge and hence we call them Quasi-Digital. By amortizing the energy costs of the mixed-signal encoding/decoding over compute-vectors with many elements, high energy efficiencies can be achieved. In this dissertation, I present a design framework for AI accelerators using scalable compute-in-memory architectures. On the device level, two primitive elements are designed and characterized as target computational technologies: (i) a multilevel non-volatile cell and (ii) a pseudo Dynamic Random-Access Memory (pseudo-DRAM) bit-cell. At the level of circuit description, compute-in-memory crossbars and mixed-signal circuits were designed, allowing seamless connectivity to digital controllers. At the level of data representation, both binary and stochastic-unary coding are used to compute Vector-Vector Multiplications (VMMs) at the array level. Finally, on the architectural level, two AI accelerator for data-center processing and edge computing are discussed. Both designs are scalable multi-core Systems-on-Chip (SoCs), where vector-processor arrays are tiled on a 2-layer Network-on-Chip (NoC), enabling neighbor communication and flexible compute vs. memory trade-off. General purpose Arm/RISCV co-processors provide adequate bootstrapping and system-housekeeping and a high-speed interface fabric facilitates Input/Output to main memory

    Real Time Sequential Non Rigid Structure from motion using a single camera

    Get PDF
    En la actualidad las aplicaciones que basan su funcionamiento en una correcta localización y reconstrucción dentro de un entorno real en 3D han experimentado un gran interés en los últimos años, tanto por la comunidad investigadora como por la industrial. Estas aplicaciones varían desde la realidad aumentada, la robótica, la simulación, los videojuegos, etc. Dependiendo de la aplicación y del nivel de detalle de la reconstrucción, se emplean diversos dispositivos, algunos específicos, más complejos y caros como las cámaras estéreo, cámara y profundidad (RGBD) con Luz estructurada y Time of Flight (ToF), así como láser y otros más avanzados. Para aplicaciones sencillas es suficiente con dispositivos de uso común, como los smartphones, en los que aplicando técnicas de visión artificial, se pueden obtener modelos 3D del entorno para, en el caso de la realidad aumentada, mostrar información aumentada en la ubicación seleccionada.En robótica, la localización y generación simultáneas de un mapa del entorno en 3D es una tarea fundamental para conseguir la navegación autónoma. Este problema se conoce en el estado del arte como Simultaneous Localization And Mapping (SLAM) o Structure from Motion (SfM). Para la aplicación de estas técnicas, el objeto no ha de cambiar su forma a lo largo del tiempo. La reconstrucción es unívoca salvo factor de escala en captura monocular sin referencia. Si la condición de rigidez no se cumple, es porque la forma del objeto cambia a lo largo del tiempo. El problema sería equivalente a realizar una reconstrucción por fotograma, lo cual no se puede hacer de manera directa, puesto que diferentes formas, combinadas con diferentes poses de cámara pueden dar proyecciones similares. Es por esto que el campo de la reconstrucción de objetos deformables es todavía un área en desarrollo. Los métodos de SfM se han adaptado aplicando modelos físicos, restricciones temporales, espaciales, geométricas o de otros tipos para reducir la ambigüedad en las soluciones, naciendo así las técnicas conocidas como Non-Rigid SfM (NRSfM).En esta tesis se propone partir de una técnica de reconstrucción rígida bien conocida en el estado del arte como es PTAM (Parallel Tracking and Mapping) y adaptarla para incluir técnicas de NRSfM, basadas en modelo de bases lineales para estimar las deformaciones del objeto modelado dinámicamente y aplicar restricciones temporales y espaciales para mejorar las reconstrucciones, además de ir adaptándose a cambios de deformación que se presenten en la secuencia. Para ello, hay que realizar cambios de manera que cada uno de sus hilos de ejecución procesen datos no rígidos.El hilo encargado del seguimiento ya realizaba seguimiento basado en un mapa de puntos 3D, proporcionado a priori. La modificación más importante aquí es la integración de un modelo de deformación lineal para que se realice el cálculo de la deformación del objeto en tiempo real, asumiendo fijas las formas básicas de deformación. El cálculo de la pose de la cámara está basado en el sistema de estimación rígido, por lo que la estimación de pose y coeficientes de deformación se hace de manera alternada usando el algoritmo E-M (Expectation-Maximization). También, se imponen restricciones temporales y de forma para restringir las ambigüedades inherentes en las soluciones y mejorar la calidad de la estimación 3D.Respecto al hilo que gestiona el mapa, se actualiza en función del tiempo para que sea capaz de mejorar las bases de deformación cuando éstas no son capaces de explicar las formas que se ven en las imágenes actuales. Para ello, se sustituye la optimización de modelo rígido incluida en este hilo por un método de procesamiento exhaustivo NRSfM, para mejorar las bases acorde a las imágenes con gran error de reconstrucción desde el hilo de seguimiento. Con esto, el modelo se consigue adaptar a nuevas deformaciones, permitiendo al sistema evolucionar y ser estable a largo plazo.A diferencia de una gran parte de los métodos de la literatura, el sistema propuesto aborda el problema de la proyección perspectiva de forma nativa, minimizando los problemas de ambigüedad y de distancia al objeto existente en la proyección ortográfica. El sistema propuesto maneja centenares de puntos y está preparado para cumplir con restricciones de tiempo real para su aplicación en sistemas con recursos hardware limitados
    corecore