52,489 research outputs found

    On Low-rank Trace Regression under General Sampling Distribution

    Full text link
    A growing number of modern statistical learning problems involve estimating a large number of parameters from a (smaller) number of noisy observations. In a subset of these problems (matrix completion, matrix compressed sensing, and multi-task learning) the unknown parameters form a high-dimensional matrix B*, and two popular approaches for the estimation are convex relaxation of rank-penalized regression or non-convex optimization. It is also known that these estimators satisfy near optimal error bounds under assumptions on rank, coherence, or spikiness of the unknown matrix. In this paper, we introduce a unifying technique for analyzing all of these problems via both estimators that leads to short proofs for the existing results as well as new results. Specifically, first we introduce a general notion of spikiness for B* and consider a general family of estimators and prove non-asymptotic error bounds for the their estimation error. Our approach relies on a generic recipe to prove restricted strong convexity for the sampling operator of the trace regression. Second, and most notably, we prove similar error bounds when the regularization parameter is chosen via K-fold cross-validation. This result is significant in that existing theory on cross-validated estimators do not apply to our setting since our estimators are not known to satisfy their required notion of stability. Third, we study applications of our general results to four subproblems of (1) matrix completion, (2) multi-task learning, (3) compressed sensing with Gaussian ensembles, and (4) compressed sensing with factored measurements. For (1), (3), and (4) we recover matching error bounds as those found in the literature, and for (2) we obtain (to the best of our knowledge) the first such error bound. We also demonstrate how our frameworks applies to the exact recovery problem in (3) and (4).Comment: 32 pages, 1 figur

    Oracle Inequalities for Convex Loss Functions with Non-Linear Targets

    Full text link
    This paper consider penalized empirical loss minimization of convex loss functions with unknown non-linear target functions. Using the elastic net penalty we establish a finite sample oracle inequality which bounds the loss of our estimator from above with high probability. If the unknown target is linear this inequality also provides an upper bound of the estimation error of the estimated parameter vector. These are new results and they generalize the econometrics and statistics literature. Next, we use the non-asymptotic results to show that the excess loss of our estimator is asymptotically of the same order as that of the oracle. If the target is linear we give sufficient conditions for consistency of the estimated parameter vector. Next, we briefly discuss how a thresholded version of our estimator can be used to perform consistent variable selection. We give two examples of loss functions covered by our framework and show how penalized nonparametric series estimation is contained as a special case and provide a finite sample upper bound on the mean square error of the elastic net series estimator.Comment: 44 page

    A convexity approach to dynamic output feedback robust MPC for LPV systems with bounded disturbances

    Get PDF
    International audienceA convexity approach to dynamic output feedback robust model predictive control (OFRMPC) is proposed for linear parameter varying (LPV) systems with bounded disturbances. At each sampling time, the model parameters and disturbances are assumed to be unknown but bounded within pre-specified convex sets. Robust stability conditions on the augmented closed-loop system are derived using the techniques of robust positively invariant (RPI) set and the S-procedure. A convexity method reformulates the non-convex bilinear matrix inequalities (BMIs) problem as a convex optimization one such that the on-line computational burden is significantly reduced. The on-line optimized dynamic output feedback controller parameters steer the augmented states to converge within RPI sets and recursive feasibility of the optimization problem is guaranteed. Furthermore, bounds of the estimation error set are refreshed by updating the shape matrix of the future ellipsoidal estimation error set. The dynamic OFRMPC approach guarantees that the disturbance-free augmented closed-loop system (without consideration of disturbances) converges to the origin. In addition, when the system is subject to bounded disturbances, the augmented closed-loop system converges to a neighborhood of the origin. Two simulation examples are given to verify the effectiveness of the approach

    A Geometric View on Constrained M-Estimators

    Get PDF
    We study the estimation error of constrained M-estimators, and derive explicit upper bounds on the expected estimation error determined by the Gaussian width of the constraint set. Both of the cases where the true parameter is on the boundary of the constraint set (matched constraint), and where the true parameter is strictly in the constraint set (mismatched constraint) are considered. For both cases, we derive novel universal estimation error bounds for regression in a generalized linear model with the canonical link function. Our error bound for the mismatched constraint case is minimax optimal in terms of its dependence on the sample size, for Gaussian linear regression by the Lasso

    Sparse Identification and Estimation of Large-Scale Vector AutoRegressive Moving Averages

    Full text link
    The Vector AutoRegressive Moving Average (VARMA) model is fundamental to the theory of multivariate time series; however, in practice, identifiability issues have led many authors to abandon VARMA modeling in favor of the simpler Vector AutoRegressive (VAR) model. Such a practice is unfortunate since even very simple VARMA models can have quite complicated VAR representations. We narrow this gap with a new optimization-based approach to VARMA identification that is built upon the principle of parsimony. Among all equivalent data-generating models, we seek the parameterization that is "simplest" in a certain sense. A user-specified strongly convex penalty is used to measure model simplicity, and that same penalty is then used to define an estimator that can be efficiently computed. We show that our estimator converges to a parsimonious element in the set of all equivalent data-generating models, in a double asymptotic regime where the number of component time series is allowed to grow with sample size. Further, we derive non-asymptotic upper bounds on the estimation error of our method relative to our specially identified target. Novel theoretical machinery includes non-asymptotic analysis of infinite-order VAR, elastic net estimation under a singular covariance structure of regressors, and new concentration inequalities for quadratic forms of random variables from Gaussian time series. We illustrate the competitive performance of our methods in simulation and several application domains, including macro-economic forecasting, demand forecasting, and volatility forecasting
    • …
    corecore