703 research outputs found

    Finite Length Analysis of LDPC Codes

    Full text link
    In this paper, we study the performance of finite-length LDPC codes in the waterfall region. We propose an algorithm to predict the error performance of finite-length LDPC codes over various binary memoryless channels. Through numerical results, we find that our technique gives better performance prediction compared to existing techniques.Comment: Submitted to WCNC 201

    Concatenated Turbo/LDPC codes for deep space communications: performance and implementation

    Get PDF
    Deep space communications require error correction codes able to reach extremely low bit-error-rates, possibly with a steep waterfall region and without error floor. Several schemes have been proposed in the literature to achieve these goals. Most of them rely on the concatenation of different codes that leads to high hardware implementation complexity and poor resource sharing. This work proposes a scheme based on the concatenation of non-custom LDPC and turbo codes that achieves excellent error correction performance. Moreover, since both LDPC and turbo codes can be decoded with the BCJR algorithm, our preliminary results show that an efficient hardware architecture with high resource reuse can be designe
    corecore