1,275 research outputs found

    A General Formula for the Mismatch Capacity

    Full text link
    The fundamental limits of channels with mismatched decoding are addressed. A general formula is established for the mismatch capacity of a general channel, defined as a sequence of conditional distributions with a general decoding metrics sequence. We deduce an identity between the Verd\'{u}-Han general channel capacity formula, and the mismatch capacity formula applied to Maximum Likelihood decoding metric. Further, several upper bounds on the capacity are provided, and a simpler expression for a lower bound is derived for the case of a non-negative decoding metric. The general formula is specialized to the case of finite input and output alphabet channels with a type-dependent metric. The closely related problem of threshold mismatched decoding is also studied, and a general expression for the threshold mismatch capacity is obtained. As an example of threshold mismatch capacity, we state a general expression for the erasures-only capacity of the finite input and output alphabet channel. We observe that for every channel there exists a (matched) threshold decoder which is capacity achieving. Additionally, necessary and sufficient conditions are stated for a channel to have a strong converse. Csisz\'{a}r and Narayan's conjecture is proved for bounded metrics, providing a positive answer to the open problem introduced in [1], i.e., that the "product-space" improvement of the lower random coding bound, Cq(∞)(W)C_q^{(\infty)}(W), is indeed the mismatch capacity of the discrete memoryless channel WW. We conclude by presenting an identity between the threshold capacity and Cq(∞)(W)C_q^{(\infty)}(W) in the DMC case

    Interference Mitigation in Large Random Wireless Networks

    Full text link
    A central problem in the operation of large wireless networks is how to deal with interference -- the unwanted signals being sent by transmitters that a receiver is not interested in. This thesis looks at ways of combating such interference. In Chapters 1 and 2, we outline the necessary information and communication theory background, including the concept of capacity. We also include an overview of a new set of schemes for dealing with interference known as interference alignment, paying special attention to a channel-state-based strategy called ergodic interference alignment. In Chapter 3, we consider the operation of large regular and random networks by treating interference as background noise. We consider the local performance of a single node, and the global performance of a very large network. In Chapter 4, we use ergodic interference alignment to derive the asymptotic sum-capacity of large random dense networks. These networks are derived from a physical model of node placement where signal strength decays over the distance between transmitters and receivers. (See also arXiv:1002.0235 and arXiv:0907.5165.) In Chapter 5, we look at methods of reducing the long time delays incurred by ergodic interference alignment. We analyse the tradeoff between reducing delay and lowering the communication rate. (See also arXiv:1004.0208.) In Chapter 6, we outline a problem that is equivalent to the problem of pooled group testing for defective items. We then present some new work that uses information theoretic techniques to attack group testing. We introduce for the first time the concept of the group testing channel, which allows for modelling of a wide range of statistical error models for testing. We derive new results on the number of tests required to accurately detect defective items, including when using sequential `adaptive' tests.Comment: PhD thesis, University of Bristol, 201
    • …
    corecore