101 research outputs found

    Discrete maximal regularity of time-stepping schemes for fractional evolution equations

    Get PDF
    In this work, we establish the maximal p\ell^p-regularity for several time stepping schemes for a fractional evolution model, which involves a fractional derivative of order α(0,2)\alpha\in(0,2), α1\alpha\neq 1, in time. These schemes include convolution quadratures generated by backward Euler method and second-order backward difference formula, the L1 scheme, explicit Euler method and a fractional variant of the Crank-Nicolson method. The main tools for the analysis include operator-valued Fourier multiplier theorem due to Weis [48] and its discrete analogue due to Blunck [10]. These results generalize the corresponding results for parabolic problems

    Numerical methods for time-fractional evolution equations with nonsmooth data: a concise overview

    Get PDF
    Over the past few decades, there has been substantial interest in evolution equations that involving a fractional-order derivative of order α(0,1)\alpha\in(0,1) in time, due to their many successful applications in engineering, physics, biology and finance. Thus, it is of paramount importance to develop and to analyze efficient and accurate numerical methods for reliably simulating such models, and the literature on the topic is vast and fast growing. The present paper gives a concise overview on numerical schemes for the subdiffusion model with nonsmooth problem data, which are important for the numerical analysis of many problems arising in optimal control, inverse problems and stochastic analysis. We focus on the following aspects of the subdiffusion model: regularity theory, Galerkin finite element discretization in space, time-stepping schemes (including convolution quadrature and L1 type schemes), and space-time variational formulations, and compare the results with that for standard parabolic problems. Further, these aspects are showcased with illustrative numerical experiments and complemented with perspectives and pointers to relevant literature.Comment: 24 pages, 3 figure

    Optimal L(L2)L^\infty(L^2) and L1(L2)L^1(L^2) a posteriori error estimates for the fully discrete approximations of time fractional parabolic differential equations

    Full text link
    We derive optimal order a posteriori error estimates in the L(L2)L^\infty(L^2) and L1(L2)L^1(L^2)-norms for the fully discrete approximations of time fractional parabolic differential equations. For the discretization in time, we use the L1L1 methods, while for the spatial discretization, we use standard conforming finite element methods. The linear and quadratic space-time reconstructions are introduced, which are generalizations of the elliptic space reconstruction. Then the related a posteriori error estimates for the linear and quadratic space-time reconstructions play key roles in deriving global and pointwise final error estimates. Numerical experiments verify and complement our theoretical results.Comment: 22 page
    corecore