15 research outputs found

    Analyzing Boltzmann Samplers for Bose-Einstein Condensates with Dirichlet Generating Functions

    Full text link
    Boltzmann sampling is commonly used to uniformly sample objects of a particular size from large combinatorial sets. For this technique to be effective, one needs to prove that (1) the sampling procedure is efficient and (2) objects of the desired size are generated with sufficiently high probability. We use this approach to give a provably efficient sampling algorithm for a class of weighted integer partitions related to Bose-Einstein condensation from statistical physics. Our sampling algorithm is a probabilistic interpretation of the ordinary generating function for these objects, derived from the symbolic method of analytic combinatorics. Using the Khintchine-Meinardus probabilistic method to bound the rejection rate of our Boltzmann sampler through singularity analysis of Dirichlet generating functions, we offer an alternative approach to analyze Boltzmann samplers for objects with multiplicative structure.Comment: 20 pages, 1 figur

    Developments in the Khintchine-Meinardus probabilistic method for asymptotic enumeration

    Full text link
    A theorem of Meinardus provides asymptotics of the number of weighted partitions under certain assumptions on associated ordinary and Dirichlet generating functions. The ordinary generating functions are closely related to Euler's generating function ∏k=1∞S(zk)\prod_{k=1}^\infty S(z^k) for partitions, where S(z)=(1βˆ’z)βˆ’1S(z)=(1-z)^{-1}. By applying a method due to Khintchine, we extend Meinardus' theorem to find the asymptotics of the coefficients of generating functions of the form ∏k=1∞S(akzk)bk\prod_{k=1}^\infty S(a_kz^k)^{b_k} for sequences aka_k, bkb_k and general S(z)S(z). We also reformulate the hypotheses of the theorem in terms of generating functions. This allows us to prove rigorously the asymptotics of Gentile statistics and to study the asymptotics of combinatorial objects with distinct components.Comment: 28 pages, This is the final version that incorporated referee's remarks.The paper will be published in Electronic Journal of Combinatoric

    A probabilistic interpretation of the Macdonald polynomials

    Full text link
    The two-parameter Macdonald polynomials are a central object of algebraic combinatorics and representation theory. We give a Markov chain on partitions of k with eigenfunctions the coefficients of the Macdonald polynomials when expanded in the power sum polynomials. The Markov chain has stationary distribution a new two-parameter family of measures on partitions, the inverse of the Macdonald weight (rescaled). The uniform distribution on permutations and the Ewens sampling formula are special cases. The Markov chain is a version of the auxiliary variables algorithm of statistical physics. Properties of the Macdonald polynomials allow a sharp analysis of the running time. In natural cases, a bounded number of steps suffice for arbitrarily large k
    corecore