535 research outputs found

    Ergodic infinite group extensions of geodesic flows on translation surfaces

    Full text link
    We show that generic infinite group extensions of geodesic flows on square tiled translation surfaces are ergodic in almost every direction, subject to certain natural constraints. Recently K. Fr\c{a}czek and C. Ulcigrai have shown that certain concrete staircases, covers of square-tiled surfaces, are not ergodic in almost every direction. In contrast we show the almost sure ergodicity of other concrete staircases. An appendix provides a combinatorial approach for the study of square-tiled surfaces

    Commensurable continued fractions

    Full text link
    We compare two families of continued fractions algorithms, the symmetrized Rosen algorithm and the Veech algorithm. Each of these algorithms expands real numbers in terms of certain algebraic integers. We give explicit models of the natural extension of the maps associated with these algorithms; prove that these natural extensions are in fact conjugate to the first return map of the geodesic flow on a related surface; and, deduce that, up to a conjugacy, almost every real number has an infinite number of common approximants for both algorithms.Comment: 41 pages, 10 figure

    Residual generic ergodicity of periodic group extensions over translation surfaces

    Full text link
    Continuing the work in \cite{ergodic-infinite}, we show that within each stratum of translation surfaces, there is a residual set of surfaces for which the geodesic flow in almost every direction is ergodic for almost-every periodic group extension produced using a technique referred to as \emph{cuts}

    Billiard Dynamics: An Updated Survey with the Emphasis on Open Problems

    Full text link
    This is an updated and expanded version of our earlier survey article \cite{Gut5}. Section §1\S 1 introduces the subject matter. Sections §2§4\S 2 - \S 4 expose the basic material following the paradigm of elliptic, hyperbolic and parabolic billiard dynamics. In section §5\S 5 we report on the recent work pertaining to the problems and conjectures exposed in the survey \cite{Gut5}. Besides, in section §5\S 5 we formulate a few additional problems and conjectures. The bibliography has been updated and considerably expanded

    Cross sections for geodesic flows and \alpha-continued fractions

    Full text link
    We adjust Arnoux's coding, in terms of regular continued fractions, of the geodesic flow on the modular surface to give a cross section on which the return map is a double cover of the natural extension for the \alpha-continued fractions, for each α\alpha in (0,1]. The argument is sufficiently robust to apply to the Rosen continued fractions and their recently introduced \alpha-variants.Comment: 20 pages, 2 figure

    On the Ergodicity of Flat Surfaces of Finite Area

    Full text link
    We prove some ergodic theorems for flat surfaces of finite area. The first result concerns such surfaces whose Teichmuller orbits are recurrent to a compact subset of SL(2;R)/SL(S)SL(2;R)/SL(S), where SL(S)SL(S) is the Veech group of the surface. In this setting, this means that the translation flow on a flat surface can be renormalized through its Veech group to reveal ergodic properties of the translation flow. This result applies in particular to flat surfaces of infinite genus and finite area. Our second result is an criterion for ergodicity based on the control of deforming metric of a flat surface. Applied to translation flows on compact surfaces, it improves and generalizes a theorem of Cheung and Eskin.Comment: 23 pages. Accepted version to appear in GAF
    corecore