1,849 research outputs found

    Optimal Bandwidth and Power Allocation for Sum Ergodic Capacity under Fading Channels in Cognitive Radio Networks

    Full text link
    This paper studies optimal bandwidth and power allocation in a cognitive radio network where multiple secondary users (SUs) share the licensed spectrum of a primary user (PU) under fading channels using the frequency division multiple access scheme. The sum ergodic capacity of all the SUs is taken as the performance metric of the network. Besides all combinations of the peak/average transmit power constraints at the SUs and the peak/average interference power constraint imposed by the PU, total bandwidth constraint of the licensed spectrum is also taken into account. Optimal bandwidth allocation is derived in closed-form for any given power allocation. The structures of optimal power allocations are also derived under all possible combinations of the aforementioned power constraints. These structures indicate the possible numbers of users that transmit at nonzero power but below their corresponding peak powers, and show that other users do not transmit or transmit at their corresponding peak power. Based on these structures, efficient algorithms are developed for finding the optimal power allocations.Comment: 28 pages, 6 figures, submitted to the IEEE Trans. Signal Processing in June 201

    On the Combined Effect of Directional Antennas and Imperfect Spectrum Sensing upon Ergodic Capacity of Cognitive Radio Systems

    Full text link
    We consider a cognitive radio system, consisting of a primary transmitter (PUtx), a primary receiver (PUrx), a secondary transmitter (SUtx), and a secondary receiver (SUrx). The secondary users (SUs) are equipped with steerable directional antennas. We assume the SUs and primary users (PUs) coexist and the SUtx knows the geometry of network. We find the ergodic capacity of the channel between SUtx and SUrx , and study how spectrum sensing errors affect the capacity. In our system, the SUtx first senses the spectrum and then transmits data at two power levels, according to the result of sensing. The optimal SUtx transmit power levels and the optimal directions of SUtx transmit antenna and SUrx receive antenna are obtained by maximizing the ergodic capacity, subject to average transmit power and average interference power constraints. To study the effect of fading channel, we considered three scenarios: 1) when SUtx knows fading channels between SUtx and PUrx, PUtx and SUrx, SUtx and SUrx, 2) when SUtx knows only the channel between SUtx and SUrx, and statistics of the other two channels, and, 3) when SUtx only knows the statistics of these three fading channels. For each scenario, we explore the optimal SUtx transmit power levels and the optimal directions of SUtx and SUrx antennas, such that the ergodic capacity is maximized, while the power constraints are satisfied

    Generalized Area Spectral Efficiency: An Effective Performance Metric for Green Wireless Communications

    Full text link
    Area spectral efficiency (ASE) was introduced as a metric to quantify the spectral utilization efficiency of cellular systems. Unlike other performance metrics, ASE takes into account the spatial property of cellular systems. In this paper, we generalize the concept of ASE to study arbitrary wireless transmissions. Specifically, we introduce the notion of affected area to characterize the spatial property of arbitrary wireless transmissions. Based on the definition of affected area, we define the performance metric, generalized area spectral efficiency (GASE), to quantify the spatial spectral utilization efficiency as well as the greenness of wireless transmissions. After illustrating its evaluation for point-to-point transmission, we analyze the GASE performance of several different transmission scenarios, including dual-hop relay transmission, three-node cooperative relay transmission and underlay cognitive radio transmission. We derive closed-form expressions for the GASE metric of each transmission scenario under Rayleigh fading environment whenever possible. Through mathematical analysis and numerical examples, we show that the GASE metric provides a new perspective on the design and optimization of wireless transmissions, especially on the transmitting power selection. We also show that introducing relay nodes can greatly improve the spatial utilization efficiency of wireless systems. We illustrate that the GASE metric can help optimize the deployment of underlay cognitive radio systems.Comment: 11 pages, 8 figures, accepted by TCo
    • …
    corecore