617 research outputs found

    Equivariant Light Field Convolution and Transformer

    Full text link
    3D reconstruction and novel view rendering can greatly benefit from geometric priors when the input views are not sufficient in terms of coverage and inter-view baselines. Deep learning of geometric priors from 2D images often requires each image to be represented in a 2D2D canonical frame and the prior to be learned in a given or learned 3D3D canonical frame. In this paper, given only the relative poses of the cameras, we show how to learn priors from multiple views equivariant to coordinate frame transformations by proposing an SE(3)SE(3)-equivariant convolution and transformer in the space of rays in 3D. This enables the creation of a light field that remains equivariant to the choice of coordinate frame. The light field as defined in our work, refers both to the radiance field and the feature field defined on the ray space. We model the ray space, the domain of the light field, as a homogeneous space of SE(3)SE(3) and introduce the SE(3)SE(3)-equivariant convolution in ray space. Depending on the output domain of the convolution, we present convolution-based SE(3)SE(3)-equivariant maps from ray space to ray space and to R3\mathbb{R}^3. Our mathematical framework allows us to go beyond convolution to SE(3)SE(3)-equivariant attention in the ray space. We demonstrate how to tailor and adapt the equivariant convolution and transformer in the tasks of equivariant neural rendering and 3D3D reconstruction from multiple views. We demonstrate SE(3)SE(3)-equivariance by obtaining robust results in roto-translated datasets without performing transformation augmentation.Comment: 46 page

    Interpretable Transformations with Encoder-Decoder Networks

    Full text link
    Deep feature spaces have the capacity to encode complex transformations of their input data. However, understanding the relative feature-space relationship between two transformed encoded images is difficult. For instance, what is the relative feature space relationship between two rotated images? What is decoded when we interpolate in feature space? Ideally, we want to disentangle confounding factors, such as pose, appearance, and illumination, from object identity. Disentangling these is difficult because they interact in very nonlinear ways. We propose a simple method to construct a deep feature space, with explicitly disentangled representations of several known transformations. A person or algorithm can then manipulate the disentangled representation, for example, to re-render an image with explicit control over parameterized degrees of freedom. The feature space is constructed using a transforming encoder-decoder network with a custom feature transform layer, acting on the hidden representations. We demonstrate the advantages of explicit disentangling on a variety of datasets and transformations, and as an aid for traditional tasks, such as classification.Comment: Accepted at ICCV 201

    Spherical Transformer: Adapting Spherical Signal to CNNs

    Full text link
    Convolutional neural networks (CNNs) have been widely used in various vision tasks, e.g. image classification, semantic segmentation, etc. Unfortunately, standard 2D CNNs are not well suited for spherical signals such as panorama images or spherical projections, as the sphere is an unstructured grid. In this paper, we present Spherical Transformer which can transform spherical signals into vectors that can be directly processed by standard CNNs such that many well-designed CNNs architectures can be reused across tasks and datasets by pretraining. To this end, the proposed method first uses locally structured sampling methods such as HEALPix to construct a transformer grid by using the information of spherical points and its adjacent points, and then transforms the spherical signals to the vectors through the grid. By building the Spherical Transformer module, we can use multiple CNN architectures directly. We evaluate our approach on the tasks of spherical MNIST recognition, 3D object classification and omnidirectional image semantic segmentation. For 3D object classification, we further propose a rendering-based projection method to improve the performance and a rotational-equivariant model to improve the anti-rotation ability. Experimental results on three tasks show that our approach achieves superior performance over state-of-the-art methods
    • …
    corecore