4 research outputs found

    A parallel Homological Spanning Forest framework for 2D topological image analysis

    Get PDF
    In [14], a topologically consistent framework to support parallel topological analysis and recognition for2 D digital objects was introduced. Based on this theoretical work, we focus on the problem of findingefficient algorithmic solutions for topological interrogation of a 2 D digital object of interest D of a pre- segmented digital image I , using 4-adjacency between pixels of D . In order to maximize the degree ofparallelization of the topological processes, we use as many elementary unit processing as pixels theimage I has. The mathematical model underlying this framework is an appropriate extension of the clas- sical concept of abstract cell complex: a primal–dual abstract cell complex (pACC for short). This versatiledata structure encompasses the notion of Homological Spanning Forest fostered in [14,15]. Starting froma symmetric pACC associated with I , the modus operandi is to construct via combinatorial operationsanother asymmetric one presenting the maximal number of non-null primal elementary interactions be- tween the cells of D . The fundamental topological tools have been transformed so as to promote anefficient parallel implementation in any parallel-oriented architecture (GPUs, multi-threaded computers,SIMD kernels and so on). A software prototype modeling such a parallel framework is built.Ministerio de Educación y Ciencia TEC2012-37868-C04-02/0

    How sufficient conditions are related for topology-preserving reductions

    Get PDF
    A crucial issue in digital topology is to ensure topology preservation for reductions acting on binary pictures (i.e., operators that never change a white point to black one). Some sufficient conditions for topology-preserving reductions have been proposed for pictures on the three possible regular partitionings of the plane (i.e., the triangular, the square, and the hexagonal grids). In this paper, the relationships among these conditions are stated

    Equivalent 2D Sequential and Parallel Thinning Algorithms

    No full text

    Acta Cybernetica : Volume 23. Number 3.

    Get PDF
    corecore