305 research outputs found

    An Introduction to Ontology

    Get PDF
    Analytical philosophy of the last one hundred years has been heavily influenced by a doctrine to the effect that one can arrive at a correct ontology by paying attention to certain superficial (syntactic) features of first-order predicate logic as conceived by Frege and Russell. More specifically, it is a doctrine to the effect that the key to the ontological structure of reality is captured syntactically in the ‘Fa’ (or, in more sophisticated versions, in the ‘Rab’) of first-order logic, where ‘F’ stands for what is general in reality and ‘a’ for what is individual. Hence “f(a)ntology”. Because predicate logic has exactly two syntactically different kinds of referring expressions—‘F’, ‘G’, ‘R’, etc., and ‘a’, ‘b’, ‘c’, etc.—so reality must consist of exactly two correspondingly different kinds of entity: the general (properties, concepts) and the particular (things, objects), the relation between these two kinds of entity being revealed in the predicate-argument structure of atomic formulas in first-order logic

    Bayesian quadrature, energy minimization, and space-filling design

    Get PDF
    A standard objective in computer experiments is to approximate the behavior of an unknown function on a compact domain from a few evaluations inside the domain. When little is known about the function, space-filling design is advisable: typically, points of evaluation spread out across the available space are obtained by minimizing a geometrical (for instance, covering radius) or a discrepancy criterion measuring distance to uniformity. The paper investigates connections between design for integration (quadrature design), construction of the (continuous) best linear unbiased estimator (BLUE) for the location model, space-filling design, and minimization of energy (kernel discrepancy) for signed measures. Integrally strictly positive definite kernels define strictly convex energy functionals, with an equivalence between the notions of potential and directional derivative, showing the strong relation between discrepancy minimization and more traditional design of optimal experiments. In particular, kernel herding algorithms, which are special instances of vertex-direction methods used in optimal design, can be applied to the construction of point sequences with suitable space-filling properties

    Randomized Algorithms for High-Dimensional Integration and Approximation

    Get PDF
    We prove upper and lower error bounds for error of the randomized Smolyak algorithm and provide a thorough case study of applying the randomized Smolyak algorithm with the building blocks being quadratures based on scrambled nets for integration of functions coming from Haar-wavelets spaces. Moreover, we discuss different notions of negative dependence of randomized point sets which find applications in discrepancy theory and randomized quasi-Monte Carlo integration
    corecore