10,554 research outputs found

    A constant-time algorithm for middle levels Gray codes

    Get PDF
    For any integer n≥1n\geq 1 a middle levels Gray code is a cyclic listing of all nn-element and (n+1)(n+1)-element subsets of {1,2,…,2n+1}\{1,2,\ldots,2n+1\} such that any two consecutive subsets differ in adding or removing a single element. The question whether such a Gray code exists for any n≥1n\geq 1 has been the subject of intensive research during the last 30 years, and has been answered affirmatively only recently [T. M\"utze. Proof of the middle levels conjecture. Proc. London Math. Soc., 112(4):677--713, 2016]. In a follow-up paper [T. M\"utze and J. Nummenpalo. An efficient algorithm for computing a middle levels Gray code. To appear in ACM Transactions on Algorithms, 2018] this existence proof was turned into an algorithm that computes each new set in the Gray code in time O(n)\mathcal{O}(n) on average. In this work we present an algorithm for computing a middle levels Gray code in optimal time and space: each new set is generated in time O(1)\mathcal{O}(1) on average, and the required space is O(n)\mathcal{O}(n)

    On Optimal TCM Encoders

    Get PDF
    An asymptotically optimal trellis-coded modulation (TCM) encoder requires the joint design of the encoder and the binary labeling of the constellation. Since analytical approaches are unknown, the only available solution is to perform an exhaustive search over the encoder and the labeling. For large constellation sizes and/or many encoder states, however, an exhaustive search is unfeasible. Traditional TCM designs overcome this problem by using a labeling that follows the set-partitioning principle and by performing an exhaustive search over the encoders. In this paper we study binary labelings for TCM and show how they can be grouped into classes, which considerably reduces the search space in a joint design. For 8-ary constellations, the number of different binary labelings that must be tested is reduced from 8!=40320 to 240. For the particular case of an 8-ary pulse amplitude modulation constellation, this number is further reduced to 120 and for 8-ary phase shift keying to only 30. An algorithm to generate one labeling in each class is also introduced. Asymptotically optimal TCM encoders are tabulated which are up to 0.3 dB better than the previously best known encoders

    A short proof of the middle levels theorem

    Get PDF
    Consider the graph that has as vertices all bitstrings of length 2n+12n+1 with exactly nn or n+1n+1 entries equal to 1, and an edge between any two bitstrings that differ in exactly one bit. The well-known middle levels conjecture asserts that this graph has a Hamilton cycle for any n≥1n\geq 1. In this paper we present a new proof of this conjecture, which is much shorter and more accessible than the original proof

    On the Asymptotic Performance of Bit-Wise Decoders for Coded Modulation

    Get PDF
    Two decoder structures for coded modulation over the Gaussian and flat fading channels are studied: the maximum likelihood symbol-wise decoder, and the (suboptimal) bit-wise decoder based on the bit-interleaved coded modulation paradigm. We consider a 16-ary quadrature amplitude constellation labeled by a Gray labeling. It is shown that the asymptotic loss in terms of pairwise error probability, for any two codewords caused by the bit-wise decoder, is bounded by 1.25 dB. The analysis also shows that for the Gaussian channel the asymptotic loss is zero for a wide range of linear codes, including all rate-1/2 convolutional codes

    General BER Expression for One-Dimensional Constellations

    Full text link
    A novel general ready-to-use bit-error rate (BER) expression for one-dimensional constellations is developed. The BER analysis is performed for bit patterns that form a labeling. The number of patterns for equally spaced M-PAM constellations with different BER is analyzed.Comment: To appear in the Proceedings of the IEEE Global Communications Conference (GLOBECOM) 2012. Remark 3 modifie
    • …
    corecore