1,173 research outputs found

    Symbolic Algorithms for Language Equivalence and Kleene Algebra with Tests

    Get PDF
    We first propose algorithms for checking language equivalence of finite automata over a large alphabet. We use symbolic automata, where the transition function is compactly represented using a (multi-terminal) binary decision diagrams (BDD). The key idea consists in computing a bisimulation by exploring reachable pairs symbolically, so as to avoid redundancies. This idea can be combined with already existing optimisations, and we show in particular a nice integration with the disjoint sets forest data-structure from Hopcroft and Karp's standard algorithm. Then we consider Kleene algebra with tests (KAT), an algebraic theory that can be used for verification in various domains ranging from compiler optimisation to network programming analysis. This theory is decidable by reduction to language equivalence of automata on guarded strings, a particular kind of automata that have exponentially large alphabets. We propose several methods allowing to construct symbolic automata out of KAT expressions, based either on Brzozowski's derivatives or standard automata constructions. All in all, this results in efficient algorithms for deciding equivalence of KAT expressions

    Control Plane Compression

    Full text link
    We develop an algorithm capable of compressing large networks into a smaller ones with similar control plane behavior: For every stable routing solution in the large, original network, there exists a corresponding solution in the compressed network, and vice versa. Our compression algorithm preserves a wide variety of network properties including reachability, loop freedom, and path length. Consequently, operators may speed up network analysis, based on simulation, emulation, or verification, by analyzing only the compressed network. Our approach is based on a new theory of control plane equivalence. We implement these ideas in a tool called Bonsai and apply it to real and synthetic networks. Bonsai can shrink real networks by over a factor of 5 and speed up analysis by several orders of magnitude.Comment: Extended version of the paper appearing in ACM SIGCOMM 201

    Sigref ā€“ A Symbolic Bisimulation Tool Box

    Get PDF
    We present a uniform signature-based approach to compute the most popular bisimulations. Our approach is implemented symbolically using BDDs, which enables the handling of very large transition systems. Signatures for the bisimulations are built up from a few generic building blocks, which naturally correspond to efficient BDD operations. Thus, the definition of an appropriate signature is the key for a rapid development of algorithms for other types of bisimulation. We provide experimental evidence of the viability of this approach by presenting computational results for many bisimulations on real-world instances. The experiments show cases where our framework can handle state spaces efficiently that are far too large to handle for any tool that requires an explicit state space description. This work was partly supported by the German Research Council (DFG) as part of the Transregional Collaborative Research Center ā€œAutomatic Verification and Analysis of Complex Systemsā€ (SFB/TR 14 AVACS). See www.avacs.org for more information

    Applying Formal Methods to Networking: Theory, Techniques and Applications

    Full text link
    Despite its great importance, modern network infrastructure is remarkable for the lack of rigor in its engineering. The Internet which began as a research experiment was never designed to handle the users and applications it hosts today. The lack of formalization of the Internet architecture meant limited abstractions and modularity, especially for the control and management planes, thus requiring for every new need a new protocol built from scratch. This led to an unwieldy ossified Internet architecture resistant to any attempts at formal verification, and an Internet culture where expediency and pragmatism are favored over formal correctness. Fortunately, recent work in the space of clean slate Internet design---especially, the software defined networking (SDN) paradigm---offers the Internet community another chance to develop the right kind of architecture and abstractions. This has also led to a great resurgence in interest of applying formal methods to specification, verification, and synthesis of networking protocols and applications. In this paper, we present a self-contained tutorial of the formidable amount of work that has been done in formal methods, and present a survey of its applications to networking.Comment: 30 pages, submitted to IEEE Communications Surveys and Tutorial

    Convergence behaviour of structural FSM traversal

    Get PDF
    We present a theoretical analysis of structural FSM traversal, which is the basis for the sequential equivalence checking algorithm Record & Play presented earlier. We compare the convergence behaviour of exact and approximative structural FSM traversal with that of standard BDD-based FSM traversal. We show that for most circuits encountered in practice exact structural FSM traversal reaches the fixed point as fast as symbolic FSM traversal, while approximation can significantly reduce in the number of iterations needed. Our experiments confirm these results

    Circuit Based Quantification: Back to State Set Manipulation within Unbounded Model Checking

    Get PDF
    In this paper a non-canonical circuit-based state set representation is used to efficiently perform quantifier elimination. The novelty of this approach lies in adapting equivalence checking and logic synthesis techniques, to the goal of compacting circuit based state set representations resulting from existential quantification. The method can be efficiently combined with other verification approaches such as inductive and SAT-based pre-image verifications

    Partial Quantifier Elimination By Certificate Clauses

    Full text link
    We study partial quantifier elimination (PQE) for propositional CNF formulas. In contrast to full quantifier elimination, in PQE, one can limit the set of clauses taken out of the scope of quantifiers to a small subset of target clauses. The appeal of PQE is twofold. First, PQE can be dramatically simpler than full quantifier elimination. Second, it provides a language for performing incremental computations. Many verification problems (e.g. equivalence checking and model checking) are inherently incremental and so can be solved in terms of PQE. Our approach is based on deriving clauses depending only on unquantified variables that make the target clauses redundant\mathit{redundant}. Proving redundancy of a target clause is done by construction of a ``certificate'' clause implying the former. We describe a PQE algorithm called START\mathit{START} that employs the approach above. We apply START\mathit{START} to generating properties of a design implementation that are not implied by specification. The existence of an unwanted\mathit{unwanted} property means that this implementation is buggy. Our experiments with HWMCC-13 benchmarks suggest that START\mathit{START} can be used for generating properties of real-life designs

    Conditional Transition Systems with Upgrades

    Get PDF
    We introduce a variant of transition systems, where activation of transitions depends on conditions of the environment and upgrades during runtime potentially create additional transitions. Using a cornerstone result in lattice theory, we show that such transition systems can be modelled in two ways: as conditional transition systems (CTS) with a partial order on conditions, or as lattice transition systems (LaTS), where transitions are labelled with the elements from a distributive lattice. We define equivalent notions of bisimilarity for both variants and characterise them via a bisimulation game. We explain how conditional transition systems are related to featured transition systems for the modelling of software product lines. Furthermore, we show how to compute bisimilarity symbolically via BDDs by defining an operation on BDDs that approximates an element of a Boolean algebra into a lattice. We have implemented our procedure and provide runtime results
    • ā€¦
    corecore