4,368 research outputs found

    Equivalence Checking of Sequential Quantum Circuits

    Full text link
    We define a formal framework for equivalence checking of sequential quantum circuits. The model we adopted is a quantum state machine, which is a natural quantum generalisation of Mealy machines. A major difficulty in checking quantum circuits (but not present in checking classical circuits) is that the state spaces of quantum circuits are continuums. This difficulty is resolved by our main theorem showing that equivalence checking of two quantum Mealy machines can be done with input sequences that are taken from some chosen basis (which are finite) and have a length quadratic in the dimensions of the state Hilbert spaces of the machines. Based on this theoretical result, we develop an (and to the best of our knowledge, the first) algorithm for checking equivalence of sequential quantum circuits. A case study and experiments are presented

    Equivalence Checking of Quantum Finite-State Machines

    Full text link
    In this paper, we introduce the model of quantum Mealy machines and study the equivalence checking and minimisation problems of them. Two efficient algorithms are developed for checking equivalence of two states in the same machine and for checking equivalence of two machines. They are applied in experiments of equivalence checking of quantum circuits. Moreover, it is shown that the minimisation problem is proved to be in \textbf{PSPACE}

    Perfect Computational Equivalence between Quantum Turing Machines and Finitely Generated Uniform Quantum Circuit Families

    Get PDF
    In order to establish the computational equivalence between quantum Turing machines (QTMs) and quantum circuit families (QCFs) using Yao's quantum circuit simulation of QTMs, we previously introduced the class of uniform QCFs based on an infinite set of elementary gates, which has been shown to be computationally equivalent to the polynomial-time QTMs (with appropriate restriction of amplitudes) up to bounded error simulation. This result implies that the complexity class BQP introduced by Bernstein and Vazirani for QTMs equals its counterpart for uniform QCFs. However, the complexity classes ZQP and EQP for QTMs do not appear to equal their counterparts for uniform QCFs. In this paper, we introduce a subclass of uniform QCFs, the finitely generated uniform QCFs, based on finite number of elementary gates and show that the class of finitely generated uniform QCFs is perfectly equivalent to the class of polynomial-time QTMs; they can exactly simulate each other. This naturally implies that BQP as well as ZQP and EQP equal the corresponding complexity classes of the finitely generated uniform QCFs.Comment: 11page

    Bounded Counter Languages

    Full text link
    We show that deterministic finite automata equipped with kk two-way heads are equivalent to deterministic machines with a single two-way input head and k−1k-1 linearly bounded counters if the accepted language is strictly bounded, i.e., a subset of a1∗a2∗...am∗a_1^*a_2^*... a_m^* for a fixed sequence of symbols a1,a2,...,ama_1, a_2,..., a_m. Then we investigate linear speed-up for counter machines. Lower and upper time bounds for concrete recognition problems are shown, implying that in general linear speed-up does not hold for counter machines. For bounded languages we develop a technique for speeding up computations by any constant factor at the expense of adding a fixed number of counters

    (Un)decidable Problems about Reachability of Quantum Systems

    Full text link
    We study the reachability problem of a quantum system modelled by a quantum automaton. The reachable sets are chosen to be boolean combinations of (closed) subspaces of the state space of the quantum system. Four different reachability properties are considered: eventually reachable, globally reachable, ultimately forever reachable, and infinitely often reachable. The main result of this paper is that all of the four reachability properties are undecidable in general; however, the last three become decidable if the reachable sets are boolean combinations without negation

    Computing with Coloured Tangles

    Full text link
    We suggest a diagrammatic model of computation based on an axiom of distributivity. A diagram of a decorated coloured tangle, similar to those that appear in low dimensional topology, plays the role of a circuit diagram. Equivalent diagrams represent bisimilar computations. We prove that our model of computation is Turing complete, and that with bounded resources it can moreover decide any language in complexity class IP, sometimes with better performance parameters than corresponding classical protocols.Comment: 36 pages,; Introduction entirely rewritten, Section 4.3 adde
    • …
    corecore