2,392 research outputs found

    Chore division on a graph

    Get PDF
    The paper considers fair allocation of indivisible nondisposable items that generate disutility (chores). We assume that these items are placed in the vertices of a graph and each agent's share has to form a connected subgraph of this graph. Although a similar model has been investigated before for goods, we show that the goods and chores settings are inherently different. In particular, it is impossible to derive the solution of the chores instance from the solution of its naturally associated fair division instance. We consider three common fair division solution concepts, namely proportionality, envy-freeness and equitability, and two individual disutility aggregation functions: additive and maximum based. We show that deciding the existence of a fair allocation is hard even if the underlying graph is a path or a star. We also present some efficiently solvable special cases for these graph topologies

    Nearly Equitable Allocations Beyond Additivity and Monotonicity

    Full text link
    Equitability (EQ) in fair division requires that items be allocated such that all agents value the bundle they receive equally. With indivisible items, an equitable allocation may not exist, and hence we instead consider a meaningful analog, EQx, that requires equitability up to any item. EQx allocations exist for monotone, additive valuations. However, if (1) the agents' valuations are not additive or (2) the set of indivisible items includes both goods and chores (positively and negatively valued items), then prior to the current work it was not known whether EQx allocations exist or not. We study both the existence and efficient computation of EQx allocations. (1) For monotone valuations (not necessarily additive), we show that EQx allocations always exist. Also, for the large class of weakly well-layered valuations, EQx allocations can be found in polynomial time. Further, we prove that approximately EQx allocations can be computed efficiently under general monotone valuations. (2) For non-monotone valuations, we show that an EQx allocation may not exist, even for two agents with additive valuations. Under some special cases, however, we establish existence and efficient computability of EQx allocations. This includes the case of two agents with additive valuations where each item is either a good or a chore, and there are no mixed items. In addition, we show that, under nonmonotone valuations, determining the existence of EQx allocations is weakly NP-hard for two agents and strongly NP-hard for more agents.Comment: 28 page

    Fairly Allocating Contiguous Blocks of Indivisible Items

    Full text link
    In this paper, we study the classic problem of fairly allocating indivisible items with the extra feature that the items lie on a line. Our goal is to find a fair allocation that is contiguous, meaning that the bundle of each agent forms a contiguous block on the line. While allocations satisfying the classical fairness notions of proportionality, envy-freeness, and equitability are not guaranteed to exist even without the contiguity requirement, we show the existence of contiguous allocations satisfying approximate versions of these notions that do not degrade as the number of agents or items increases. We also study the efficiency loss of contiguous allocations due to fairness constraints.Comment: Appears in the 10th International Symposium on Algorithmic Game Theory (SAGT), 201

    Fair Division of a Graph

    Full text link
    We consider fair allocation of indivisible items under an additional constraint: there is an undirected graph describing the relationship between the items, and each agent's share must form a connected subgraph of this graph. This framework captures, e.g., fair allocation of land plots, where the graph describes the accessibility relation among the plots. We focus on agents that have additive utilities for the items, and consider several common fair division solution concepts, such as proportionality, envy-freeness and maximin share guarantee. While finding good allocations according to these solution concepts is computationally hard in general, we design efficient algorithms for special cases where the underlying graph has simple structure, and/or the number of agents -or, less restrictively, the number of agent types- is small. In particular, despite non-existence results in the general case, we prove that for acyclic graphs a maximin share allocation always exists and can be found efficiently.Comment: 9 pages, long version of accepted IJCAI-17 pape

    Allocation in Practice

    Full text link
    How do we allocate scarcere sources? How do we fairly allocate costs? These are two pressing challenges facing society today. I discuss two recent projects at NICTA concerning resource and cost allocation. In the first, we have been working with FoodBank Local, a social startup working in collaboration with food bank charities around the world to optimise the logistics of collecting and distributing donated food. Before we can distribute this food, we must decide how to allocate it to different charities and food kitchens. This gives rise to a fair division problem with several new dimensions, rarely considered in the literature. In the second, we have been looking at cost allocation within the distribution network of a large multinational company. This also has several new dimensions rarely considered in the literature.Comment: To appear in Proc. of 37th edition of the German Conference on Artificial Intelligence (KI 2014), Springer LNC

    ALLOCATION PROBLEMS WITH INDIVISIBILITIES WHEN PREFERENCES ARE SINGLE-PEAKED

    Get PDF
    We consider allocation problems with indivisible goods when agents’ preferences are single-peaked. Two natural procedures (up methods and temporary satisfaction methods) are proposed to solve these problems. They are constructed by using priority methods on the cartesian product of agents and integer numbers, interpreted either as peaks or opposite peaks. Thus, two families of solutions arise this way. Our two families of solutions satisfy properties very much related to some well-known properties studied in the case of perfectly divisible goods, and they have a strong relationship with the continuous uniform and equal-distance rules, respectively.Allocation problem, indivisibilities, single-peaked preferences, temporary satisfaction method, up method.

    Dividing the Indivisible: Procedures for Allocating Cabinet Ministries to Political Parties in a Parliamentary System

    Get PDF
    Political parties in Northern Ireland recently used a divisor method of apportionment to choose, in sequence, ten cabinet ministries. If the parties have complete information about each others' preferences, we show that it may not be rational for them to act sincerely by choosing their most-preferred ministry that is available. One consequence of acting sophisticatedly is that the resulting allocation may not be Pareto-optimal, making all the parties worse off. Another is nonmonotonicty—choosing earlier may hurt rather than help a party. We introduce a mechanism that combines sequential choices with a structured form of trading that results in sincere choices for two parties. Although there are difficulties in extending this mechanism to more than two parties, other approaches are explored, such as permitting parties to making consecutive choices not prescribed by an apportionment method. But certain problems, such as eliminating envy, remain.Proportional Representation, apportionment, divisor methods, Sincere and Sophisticated Choices, Envy Free Allocations, Sports Drafts
    • 

    corecore