5,682 research outputs found

    Mechanism design for decentralized online machine scheduling

    Get PDF
    Traditional optimization models assume a central decision maker who optimizes a global system performance measure. However, problem data is often distributed among several agents, and agents take autonomous decisions. This gives incentives for strategic behavior of agents, possibly leading to sub-optimal system performance. Furthermore, in dynamic environments, machines are locally dispersed and administratively independent. Examples are found both in business and engineering applications. We investigate such issues for a parallel machine scheduling model where jobs arrive online over time. Instead of centrally assigning jobs to machines, each machine implements a local sequencing rule and jobs decide for machines themselves. In this context, we introduce the concept of a myopic best response equilibrium, a concept weaker than the classical dominant strategy equilibrium, but appropriate for online problems. Our main result is a polynomial time, online mechanism that |assuming rational behavior of jobs| results in an equilibrium schedule that is 3.281-competitive with respect to the maximal social welfare. This is only lightly worse than state-of-the-art algorithms with central coordination

    Games and Mechanism Design in Machine Scheduling – An Introduction

    Get PDF
    In this paper, we survey different models, techniques, and some recent results to tackle machine scheduling problems within a distributed setting. In traditional optimization, a central authority is asked to solve a (computationally hard) optimization problem. In contrast, in distributed settings there are several agents, possibly equipped with private information that is not publicly known, and these agents need to interact in order to derive a solution to the problem. Usually the agents have their individual preferences, which induces them to behave strategically in order to manipulate the resulting solution. Nevertheless, one is often interested in the global performance of such systems. The analysis of such distributed settings requires techniques from classical Optimization, Game Theory, and Economic Theory. The paper therefore briefly introduces the most important of the underlying concepts, and gives a selection of typical research questions and recent results, focussing on applications to machine scheduling problems. This includes the study of the so-called price of anarchy for settings where the agents do not possess private information, as well as the design and analysis of (truthful) mechanisms in settings where the agents do possess private information.computer science applications;

    Non-clairvoyant Scheduling Games

    Full text link
    In a scheduling game, each player owns a job and chooses a machine to execute it. While the social cost is the maximal load over all machines (makespan), the cost (disutility) of each player is the completion time of its own job. In the game, players may follow selfish strategies to optimize their cost and therefore their behaviors do not necessarily lead the game to an equilibrium. Even in the case there is an equilibrium, its makespan might be much larger than the social optimum, and this inefficiency is measured by the price of anarchy -- the worst ratio between the makespan of an equilibrium and the optimum. Coordination mechanisms aim to reduce the price of anarchy by designing scheduling policies that specify how jobs assigned to a same machine are to be scheduled. Typically these policies define the schedule according to the processing times as announced by the jobs. One could wonder if there are policies that do not require this knowledge, and still provide a good price of anarchy. This would make the processing times be private information and avoid the problem of truthfulness. In this paper we study these so-called non-clairvoyant policies. In particular, we study the RANDOM policy that schedules the jobs in a random order without preemption, and the EQUI policy that schedules the jobs in parallel using time-multiplexing, assigning each job an equal fraction of CPU time

    Online Ascending Auctions for Gradually Expiring Items

    Get PDF
    In this paper we consider online auction mechanisms for the allocation of M items that are identical to each other except for the fact that they have different expiration times, and each item must be allocated before it expires. Players arrive at different times, and wish to buy one item before their deadline. The main difficulty is that players act "selfishly" and may mis-report their values, deadlines, or arrival times. We begin by showing that the usual notion of truthfulness (where players follow a single dominant strategy) cannot be used in this case, since any (deterministic) truthful auction cannot obtain better than an M-approximation of the social welfare. Therefore, instead of designing auctions in which players should follow a single strategy, we design two auctions that perform well under a wide class of selfish, "semi-myopic", strategies. For every combination of such strategies, the auction is associated with a different algorithm, and so we have a family of "semi-myopic" algorithms. We show that any algorithm in this family obtains a 3-approximation, and by this conclude that our auctions will perform well under any choice of such semi-myopic behaviors. We next turn to provide a game-theoretic justification for acting in such a semi-myopic way. We suggest a new notion of "Set-Nash" equilibrium, where we cannot pin-point a single best-response strategy, but rather only a set of possible best-response strategies. We show that our auctions have a Set-Nash equilibrium which is all semi-myopic, hence guarantees a 3-approximation. We believe that this notion is of independent interest

    The Quality of Equilibria for Set Packing Games

    Get PDF
    We introduce set packing games as an abstraction of situations in which nn selfish players select subsets of a finite set of indivisible items, and analyze the quality of several equilibria for this class of games. Assuming that players are able to approximately play equilibrium strategies, we show that the total quality of the resulting equilibrium solutions is only moderately suboptimal. Our results are tight bounds on the price of anarchy for three equilibrium concepts, namely Nash equilibria, subgame perfect equilibria, and an equilibrium concept that we refer to as kk-collusion Nash equilibrium

    A Parameterisation of Algorithms for Distributed Constraint Optimisation via Potential Games

    No full text
    This paper introduces a parameterisation of learning algorithms for distributed constraint optimisation problems (DCOPs). This parameterisation encompasses many algorithms developed in both the computer science and game theory literatures. It is built on our insight that when formulated as noncooperative games, DCOPs form a subset of the class of potential games. This result allows us to prove convergence properties of algorithms developed in the computer science literature using game theoretic methods. Furthermore, our parameterisation can assist system designers by making the pros and cons of, and the synergies between, the various DCOP algorithm components clear
    • 

    corecore