6,418 research outputs found

    What can we learn from Semantic Tagging?

    Full text link
    We investigate the effects of multi-task learning using the recently introduced task of semantic tagging. We employ semantic tagging as an auxiliary task for three different NLP tasks: part-of-speech tagging, Universal Dependency parsing, and Natural Language Inference. We compare full neural network sharing, partial neural network sharing, and what we term the learning what to share setting where negative transfer between tasks is less likely. Our findings show considerable improvements for all tasks, particularly in the learning what to share setting, which shows consistent gains across all tasks.Comment: 9 pages with references and appendixes. EMNLP 2018 camera read

    POS Tagging and its Applications for Mathematics

    Full text link
    Content analysis of scientific publications is a nontrivial task, but a useful and important one for scientific information services. In the Gutenberg era it was a domain of human experts; in the digital age many machine-based methods, e.g., graph analysis tools and machine-learning techniques, have been developed for it. Natural Language Processing (NLP) is a powerful machine-learning approach to semiautomatic speech and language processing, which is also applicable to mathematics. The well established methods of NLP have to be adjusted for the special needs of mathematics, in particular for handling mathematical formulae. We demonstrate a mathematics-aware part of speech tagger and give a short overview about our adaptation of NLP methods for mathematical publications. We show the use of the tools developed for key phrase extraction and classification in the database zbMATH

    Scientific Information Extraction with Semi-supervised Neural Tagging

    Full text link
    This paper addresses the problem of extracting keyphrases from scientific articles and categorizing them as corresponding to a task, process, or material. We cast the problem as sequence tagging and introduce semi-supervised methods to a neural tagging model, which builds on recent advances in named entity recognition. Since annotated training data is scarce in this domain, we introduce a graph-based semi-supervised algorithm together with a data selection scheme to leverage unannotated articles. Both inductive and transductive semi-supervised learning strategies outperform state-of-the-art information extraction performance on the 2017 SemEval Task 10 ScienceIE task.Comment: accepted by EMNLP 201

    Domain Adaptation for Statistical Classifiers

    Full text link
    The most basic assumption used in statistical learning theory is that training data and test data are drawn from the same underlying distribution. Unfortunately, in many applications, the "in-domain" test data is drawn from a distribution that is related, but not identical, to the "out-of-domain" distribution of the training data. We consider the common case in which labeled out-of-domain data is plentiful, but labeled in-domain data is scarce. We introduce a statistical formulation of this problem in terms of a simple mixture model and present an instantiation of this framework to maximum entropy classifiers and their linear chain counterparts. We present efficient inference algorithms for this special case based on the technique of conditional expectation maximization. Our experimental results show that our approach leads to improved performance on three real world tasks on four different data sets from the natural language processing domain
    corecore