214 research outputs found

    Inversion, Iteration, and the Art of Dual Wielding

    Full text link
    The humble †\dagger ("dagger") is used to denote two different operations in category theory: Taking the adjoint of a morphism (in dagger categories) and finding the least fixed point of a functional (in categories enriched in domains). While these two operations are usually considered separately from one another, the emergence of reversible notions of computation shows the need to consider how the two ought to interact. In the present paper, we wield both of these daggers at once and consider dagger categories enriched in domains. We develop a notion of a monotone dagger structure as a dagger structure that is well behaved with respect to the enrichment, and show that such a structure leads to pleasant inversion properties of the fixed points that arise as a result. Notably, such a structure guarantees the existence of fixed point adjoints, which we show are intimately related to the conjugates arising from a canonical involutive monoidal structure in the enrichment. Finally, we relate the results to applications in the design and semantics of reversible programming languages.Comment: Accepted for RC 201

    A connection between concurrency and language theory

    Get PDF
    We show that three fixed point structures equipped with (sequential) composition, a sum operation, and a fixed point operation share the same valid equations. These are the theories of (context-free) languages, (regular) tree languages, and simulation equivalence classes of (regular) synchronization trees (or processes). The results reveal a close relationship between classical language theory and process algebra

    Kleene algebra with domain

    Full text link
    We propose Kleene algebra with domain (KAD), an extension of Kleene algebra with two equational axioms for a domain and a codomain operation, respectively. KAD considerably augments the expressiveness of Kleene algebra, in particular for the specification and analysis of state transition systems. We develop the basic calculus, discuss some related theories and present the most important models of KAD. We demonstrate applicability by two examples: First, an algebraic reconstruction of Noethericity and well-foundedness; second, an algebraic reconstruction of propositional Hoare logic.Comment: 40 page

    Unguarded Recursion on Coinductive Resumptions

    Full text link
    We study a model of side-effecting processes obtained by starting from a monad modelling base effects and adjoining free operations using a cofree coalgebra construction; one thus arrives at what one may think of as types of non-wellfounded side-effecting trees, generalizing the infinite resumption monad. Correspondingly, the arising monad transformer has been termed the coinductive generalized resumption transformer. Monads of this kind have received some attention in the recent literature; in particular, it has been shown that they admit guarded iteration. Here, we show that they also admit unguarded iteration, i.e. form complete Elgot monads, provided that the underlying base effect supports unguarded iteration. Moreover, we provide a universal characterization of the coinductive resumption monad transformer in terms of coproducts of complete Elgot monads.Comment: 47 pages, extended version of http://www.sciencedirect.com/science/article/pii/S157106611500079

    Modal Kleene algebra and applications - a survey

    Get PDF
    Modal Kleene algebras are Kleene algebras with forward and backward modal operators defined via domain and codomain operations. They provide a concise and convenient algebraic framework that subsumes various other calculi and allows treating quite a variety of areas. We survey the basic theory and some prominent applications. These include, on the system semantics side, Hoare logic and PDL (Propositional Dynamic Logic), wp calculus and predicate transformer semantics, temporal logics and termination analysis of rewrite and state transition systems. On the derivation side we apply the framework to game analysis and greedy-like algorithms

    Symbolic Algorithms for Language Equivalence and Kleene Algebra with Tests

    Get PDF
    We first propose algorithms for checking language equivalence of finite automata over a large alphabet. We use symbolic automata, where the transition function is compactly represented using a (multi-terminal) binary decision diagrams (BDD). The key idea consists in computing a bisimulation by exploring reachable pairs symbolically, so as to avoid redundancies. This idea can be combined with already existing optimisations, and we show in particular a nice integration with the disjoint sets forest data-structure from Hopcroft and Karp's standard algorithm. Then we consider Kleene algebra with tests (KAT), an algebraic theory that can be used for verification in various domains ranging from compiler optimisation to network programming analysis. This theory is decidable by reduction to language equivalence of automata on guarded strings, a particular kind of automata that have exponentially large alphabets. We propose several methods allowing to construct symbolic automata out of KAT expressions, based either on Brzozowski's derivatives or standard automata constructions. All in all, this results in efficient algorithms for deciding equivalence of KAT expressions
    • …
    corecore