90 research outputs found

    Precoded Integer-Forcing Universally Achieves the MIMO Capacity to Within a Constant Gap

    Full text link
    An open-loop single-user multiple-input multiple-output communication scheme is considered where a transmitter, equipped with multiple antennas, encodes the data into independent streams all taken from the same linear code. The coded streams are then linearly precoded using the encoding matrix of a perfect linear dispersion space-time code. At the receiver side, integer-forcing equalization is applied, followed by standard single-stream decoding. It is shown that this communication architecture achieves the capacity of any Gaussian multiple-input multiple-output channel up to a gap that depends only on the number of transmit antennas.Comment: to appear in the IEEE Transactions on Information Theor

    Decode-and-Forward Relaying via Standard AWGN Coding and Decoding

    Get PDF
    A framework is developed for decode-and-forward based relaying using standard coding and decoding that are good for the single-input single-output (SISO) additive white Gaussian noise channel. The framework is applicable to various scenarios and demonstrated for several important cases. Each of these scenarios is transformed into an equivalent Gaussian multiple-input multiple-output (MIMO) common-message broadcast problem, which proves useful even when all links are SISO ones. Over the effective MIMO broadcast channel, a recently developed Gaussian MIMO common-message broadcast scheme is applied. This scheme transforms the MIMO links into a set of parallel SISO channels with no loss of mutual information, using linear pre- and post-processing combined with successive decoding. Over these resulting SISO channels, “off-the-shelf” scalar codes may be used

    Power Allocation in Wireless Relay Networks

    Get PDF
    This thesis is mainly concerned with power allocation issues in wireless relay networks where a single or multiple relays assist transmission from a single or multiple sources to a destination. First, a network model with a single source and multiple relays is considered, in which both cases of orthogonal and non--orthogonal relaying are investigated. For the case of orthogonal relaying, two power allocation schemes corresponding to two partial channel state information (CSI) assumptions are proposed. Given the lack of full and perfect CSI, appropriate signal processing at the relays and/or destination is also developed. The performance behavior of the system with power allocation between the source and the relays is also analyzed. For the case of non-orthogonal relaying, it is demonstrated that optimal power allocation is not sufficiently effective. Instead, a relay beamforming scheme is proposed. A comprehensive comparison between the orthogonal relaying with power allocation scheme and the non-orthogonal relaying with beamforming scheme is then carried out, which reveals several interesting conclusions with respect to both error performance and system throughput. In the second part of the thesis, a network model with multiple sources and a single relay is considered. The transmission model is applicable for uplink channels in cellular mobile systems in which multiple mobile terminals communicate with the base station with the help of a single relay station. Single-carrier frequency division multiple access (SC-FDMA) technique with frequency domain equalization is adopted in order to avoid the amplification of the multiple access interference at the relay. Minimizing the transmit power at the relay and optimizing the fairness among the sources in terms of throughput are the two objectives considered in implementing power allocation schemes. The problems are visualized as water-filling and water-discharging models and two optimal power allocation schemes are proposed, accordingly. Finally, the last part of the thesis is extended to a network model with multiple sources and multiple relays. The orthogonal multiple access technique is employed in order to avoid multiple access interference. Proposed is a joint optimal beamforming and power allocation scheme in which an alternative optimization technique is applied to deal with the non-convexity of the power allocation problem. Furthermore, recognizing the high complexity and large overhead information exchange when the number of sources and relays increases, a relay selection scheme is proposed. Since each source is supported by at most one relay, the feedback information from the destination to each relay can be significantly reduced. Using an equal power allocation scheme, relay selection is still an NP-hard combinatorial optimization problem. Nevertheless, the proposed sub-optimal scheme yields a comparable performance with a much lower computational complexity and can be well suited for practical systems

    Precoder Detection for Cooperative Decode-and-Forward Relaying in OFDMA Systems

    Get PDF
    We consider an LTE network where a secondary user acts as a relay, transmitting data to the primary user using a decode-and-forward mechanism, transparent to the base-station (eNodeB). Clearly, the relay can decode symbols more reliably if the employed precoder matrix indicators (PMIs) are known. However, for closed loop spatial multiplexing (CLSM) transmit mode, this information is not always embedded in the downlink signal, leading to a need for effective methods to determine the PMI. In this thesis, we consider 2x2 MIMO and 4x4 MIMO downlink channels corresponding to CLSM and formulate two techniques to estimate the PMI at the relay using a hypothesis testing framework. We evaluate their performance via simulations for various ITU channel models over a range of SNR and for different channel quality indicators (CQIs). We compare them to the case when the true PMI is known at the relay and show that the performance of the proposed schemes are within 2 dB at 10% block error rate (BLER) in almost all scenarios. Furthermore, the techniques add minimal computational overhead over existent receiver structure. Finally, we also identify scenarios when using the proposed precoder detection algorithms in conjunction with the cooperative decode-and-forward relaying mechanism benefits the PUE and improves the BLER performance for the PUE. Therefore, we conclude from this that the proposed algorithms as well as the cooperative relaying mechanism at the CMR can be gainfully employed in a variety of real-life scenarios in LTE networks

    Channel Estimation and Equalization for Cooperative Communication

    Get PDF
    The revolutionary concept of space-time coding introduced in the last decade has demonstrated that the deployment of multiple antennas at the transmitter allows for simultaneous increase in throughput and reliability because of the additional degrees of freedom offered by the spatial dimension of the wireless channel. However, the use of antenna arrays is not practical for deployment in some practical scenarios, e. g. , sensor networks, due to space and power limitations. A new form of realizing transmit diversity has been recently introduced under the name of user cooperation or cooperative diversity. The basic idea behind cooperative diversity rests on the observation that in a wireless environment, the signal transmitted by the source node is overheard by other nodes, which can be defined as "partners" or "relays". The source and its partners can jointly process and transmit their information, creating a "virtual antenna array" and therefore emulating transmit diversity. Most of the ongoing research efforts in cooperative diversity assume frequency flat channels with perfect channel knowledge. However, in practical scenarios, e. g. broadband wireless networks, these assumptions do not apply. Frequency-selective fading and imperfect channel knowledge should be considered as a more realistic channel model. The development of equalization and channel estimation algorithms play a crucial element in the design of digital receivers as their accuracy determine the overall performance. This dissertation creates a framework for designing and analyzing various time and frequency domain equalization schemes, i. e. distributed time reversal (D-TR) STBC, distributed single carrier frequency domain (D-SC-FDE) STBC, and distributed orthogonal frequency division multiplexing (D-OFDM) STBC schemes, for broadband cooperative communication systems. Exploiting the orthogonally embedded in D-STBCs, we were able to maintain low-decoding complexity for all underlying schemes, thus, making them excellent candidates for practical scenarios, such as multi-media broadband communication systems. Furthermore, we propose and analyze various non-coherent and channel estimation algorithms to improve the quality and reliability of wireless communication networks. Specifically, we derive a non-coherent decoding rule which can be implemented in practice by a Viterbi-type algorithm. We demonstrate through the derivation of a pairwise error probability expression that the proposed non-coherent detector guarantees full diversity. Although this decoding rule has been derived assuming quasi-static channels, its inherent channel tracking capability allows its deployment over time-varying channels with a promising performance as a sub-optimal solution. As a possible alternative to non-coherent detection, we also investigate the performance of mismatched-coherent receiver, i. e. , coherent detection with imperfect channel estimation. Our performance analysis demonstrates that the mismatched-coherent receiver is able to collect the full diversity as its non-coherent competitor over quasi-static channels. Finally, we investigate and analyze the effect of multiple antennas deployment at the cooperating terminals assuming different relaying techniques. We derive pairwise error probability expressions quantifying analytically the impact of multiple antenna deployment at the source, relay and/or destination terminals on the diversity order for each of the relaying methods under consideration
    corecore