112,182 research outputs found

    Molecular construction of HIV-gp120 discontinuous epitope mimics by assembly of cyclic peptides on an orthogonal alkyne functionalized TAC-scaffold

    Get PDF
    Mimics of discontinuous epitopes of for example bacterial or viral proteins may have considerable potential for the development of synthetic vaccines, especially if conserved epitopes can be mimicked. However, due to the structural complexity and size of discontinuous epitopes molecular construction of these mimics remains challeging. We present here a convergent route for the assembly of discontinuous epitope mimics by successive azide alkyne cycloaddition on an orthogonal alkyne functionalized scaffold. Here the synthesis of mimics of the HIV gp120 discontinuous epitope that interacts with the CD4 receptor is described. The resulting protein mimics are capable of inhibition of the gp120–CD4 interaction. The route is convergent, robust and should be applicable to other discontinuous epitopes

    Epitope prediction improved by multitask support vector machines

    Full text link
    Motivation: In silico methods for the prediction of antigenic peptides binding to MHC class I molecules play an increasingly important role in the identification of T-cell epitopes. Statistical and machine learning methods, in particular, are widely used to score candidate epitopes based on their similarity with known epitopes and non epitopes. The genes coding for the MHC molecules, however, are highly polymorphic, and statistical methods have difficulties to build models for alleles with few known epitopes. In this case, recent works have demonstrated the utility of leveraging information across alleles to improve the performance of the prediction. Results: We design a support vector machine algorithm that is able to learn epitope models for all alleles simultaneously, by sharing information across similar alleles. The sharing of information across alleles is controlled by a user-defined measure of similarity between alleles. We show that this similarity can be defined in terms of supertypes, or more directly by comparing key residues known to play a role in the peptide-MHC binding. We illustrate the potential of this approach on various benchmark experiments where it outperforms other state-of-the-art methods

    CD4+ T-cell responses to Epstein-Barr virus nuclear antigen EBNA1 in Chinese populations are highly focused on novel C-terminal domain-derived epitopes

    Get PDF
    Epstein-Barr virus nuclear antigen EBNA1, the one viral protein uniformly expressed in nasopharyngeal carcinoma (NPC), represents a prime target for T-cell-based immunotherapy. However, little is known about the EBNA1 epitopes, particularly CD4 epitopes, presented by HLA alleles in Chinese people, the group at highest risk for NPC. We analyzed the CD4+^+ T-cell responses to EBNA1 in 78 healthy Chinese donors and found marked focusing on a small number of epitopes in the EBNA1 C-terminal region, including a DP5- restricted epitope that was recognized by almost half of the donors tested and elicited responses able to recognize EBNA1-expressing, DP5-positive target cells

    Definition of Naturally Processed Peptides Reveals Convergent Presentation of Autoantigenic Topoisomerase I Epitopes in Scleroderma.

    Get PDF
    ObjectiveAutoimmune responses to DNA topoisomerase I (topo I) are found in a subset of scleroderma patients who are at high risk for interstitial lung disease (ILD) and mortality. Anti-topo I antibodies (ATAs) are associated with specific HLA-DRB1 alleles, and the frequency of HLA-DR-restricted topo I-specific CD4+ T cells is associated with the presence, severity, and progression of ILD. Although this strongly implicates the presentation of topo I peptides by HLA-DR in scleroderma pathogenesis, the processing and presentation of topo I has not been studied.MethodsWe developed a natural antigen processing assay (NAPA) to identify putative CD4+ T cell epitopes of topo I presented by monocyte-derived dendritic cells (mo-DCs) from 6 ATA-positive patients with scleroderma. Mo-DCs were pulsed with topo I protein, HLA-DR-peptide complexes were isolated, and eluted peptides were analyzed by mass spectrometry. We then examined the ability of these naturally presented peptides to induce CD4+ T cell activation in 11 ATA-positive and 11 ATA-negative scleroderma patients.ResultsWe found that a common set of 10 topo I epitopes was presented by Mo-DCs from scleroderma patients with diverse HLA-DR variants. Sequence analysis revealed shared peptide-binding motifs within the HLA-DRÎČ chains of ATA-positive patients and a subset of topo I epitopes with distinct sets of anchor residues capable of binding to multiple different HLA-DR variants. The NAPA-derived epitopes elicited robust CD4+ T cell responses in 73% of ATA-positive patients (8 of 11), and the number of epitopes recognized correlated with ILD severity (P = 0.025).ConclusionThese findings mechanistically implicate the presentation of a convergent set of topo I epitopes in the development of scleroderma

    Celiac Immunogenic Potential of α-Gliadin Epitope Variants from Triticum and Aegilops Species

    Get PDF
    The high global demand of wheat and its subsequent consumption arise from the physicochemical properties of bread dough and its contribution to the protein intake in the human diet. Gluten is the main structural complex of wheat proteins and subjects affected by celiac disease (CD) cannot tolerate gluten protein. Within gluten proteins, α-gliadins constitute the most immunogenic fraction since they contain the main T-cell stimulating epitopes (DQ2.5-glia-α1, DQ2.5-glia-α2, and DQ2.5-glia-α3). In this work, the celiac immunotoxic potential of α-gliadins was studied within Triticeae: diploid, tetraploid, and hexaploid species. The abundance and immunostimulatory capacity of CD canonical epitopes and variants (with one or two mismatches) in all α-gliadin sequences were determined. The results showed that the canonical epitopes DQ2.5-glia-α1 and DQ2.5-glia-α3 were more frequent than DQ2.5-glia-α2. A higher abundance of canonical DQ2.5-glia-α1 epitope was found to be associated with genomes of the BBAADD, AA, and DD types; however, the abundance of DQ2.5-glia-α3 epitope variants was very high in BBAADD and BBAA wheat despite their low abundance in the canonical epitope. The most abundant substitution was that of proline to serine, which was disposed mainly on the three canonical DQ2.5 domains on position 8. Interestingly, our results demonstrated that the natural introduction of Q to H at any position eliminates the toxicity of the three T-cell epitopes in the α-gliadins. The results provided a rational approach for the introduction of natural amino acid substitutions to eliminate the toxicity of three T-cell epitopes, while maintaining the technological properties of commercial wheats

    Predicting the effectiveness of hepatitis C virus neutralizing antibodies by bioinformatic analysis of conserved epitope residues using public sequence data

    Get PDF
    Hepatitis C virus (HCV) is a global health issue. Although direct-acting antivirals are available to target HCV, there is currently no vaccine. The diversity of the virus is a major obstacle to HCV vaccine development. One approach toward a vaccine is to utilize a strategy to elicit broadly neutralizing antibodies (bNAbs) that target highly-conserved epitopes. The conserved epitopes of bNAbs have been mapped almost exclusively to the E2 glycoprotein. In this study, we have used HCV-GLUE, a bioinformatics resource for HCV sequence data, to investigate the major epitopes targeted by well-characterized bNAbs. Here, we analyze the level of conservation of each epitope by genotype and subtype and consider the most promising bNAbs identified to date for further study as potential vaccine leads. For the most conserved epitopes, we also identify the most prevalent sequence variants in the circulating HCV population. We examine the distribution of E2 sequence data from across the globe and highlight regions with no coverage. Genotype 1 is the most prevalent genotype worldwide, but in many regions, it is not the dominant genotype. We find that the sequence conservation data is very encouraging; several bNAbs have a high level of conservation across all genotypes suggesting that it may be unnecessary to tailor vaccines according to the geographical distribution of genotypes

    Antibodies to glycans dominate the host response to schistosome larvae and eggs: Is their role protective or subversive?

    Get PDF
    Multiple exposures of chimpanzees to the radiation-attenuated schistosome vaccine provoked a strong parasite-specific cellular and humoral immune response. Specific IgM and IgG were directed mainly against glycans on antigens released by cercariae; these were also cross-reactive with soluble antigens from larvae, adult worms, and eggs. Egg deposition was the major antigenic stimulus after challenge of vaccinated and control chimpanzees with normal parasites, eliciting strong antiglycan responses to egg secretions. Glycan epitopes recognized included LacdiNAc, fucosylated LacdiNAc, LewisX (weakly), and those on keyhole limpet hemocyanin. Antibodies to peptide epitopes became prominent only during the chronic phase of infection, as glycan-specific IgM and IgG decreased. Because of their intensity and cross-reactivity, the antiglycan responses resulting from infection could be a smoke screen to subvert the immune system away from more vulnerable larval peptide epitopes. Their occurrence in humans might explain the long time required for antischistosome immunity to build up after infection

    Application of the pMHC array to characterise tumour antigen specific T cell populations in leukaemia patients at disease diagnosis

    Get PDF
    Immunotherapy treatments for cancer are becoming increasingly successful, however to further improve our understanding of the T-cell recognition involved in effective responses and to encourage moves towards the development of personalised treatments for leukaemia immunotherapy, precise antigenic targets in individual patients have been identified. Cellular arrays using peptide-MHC (pMHC) tetramers allow the simultaneous detection of different antigen specific T-cell populations naturally circulating in patients and normal donors. We have developed the pMHC array to detect CD8+ T-cell populations in leukaemia patients that recognise epitopes within viral antigens (cytomegalovirus (CMV) and influenza (Flu)) and leukaemia antigens (including Per Arnt Sim domain 1 (PASD1), MelanA, Wilms’ Tumour (WT1) and tyrosinase). We show that the pMHC array is at least as sensitive as flow cytometry and has the potential to rapidly identify more than 40 specific T-cell populations in a small sample of T-cells (0.8–1.4 x 106). Fourteen of the twenty-six acute myeloid leukaemia (AML) patients analysed had T cells that recognised tumour antigen epitopes, and eight of these recognised PASD1 epitopes. Other tumour epitopes recognised were MelanA (n = 3), tyrosinase (n = 3) and WT1126-134 (n = 1). One of the seven acute lymphocytic leukaemia (ALL) patients analysed had T cells that recognised the MUC1950-958 epitope. In the future the pMHC array may be used provide point of care T-cell analyses, predict patient response to conventional therapy and direct personalised immunotherapy for patients
    • 

    corecore