3 research outputs found

    Full characterization of Parikh's Relevance-Sensitive Axiom for Belief Revision

    Full text link
    © 2019 AI Access Foundation. In this article, the epistemic-entrenchment and partial-meet characterizations of Parikh's relevance-sensitive axiom for belief revision, known as axiom (P), are provided. In short, axiom (P) states that, if a belief set K can be divided into two disjoint compartments, and the new information ' relates only to the first compartment, then the revision of K by ' should not affect the second compartment. Accordingly, we identify the subclass of epistemic-entrenchment and that of selection-function preorders, inducing AGM revision functions that satisfy axiom (P). Hence, together with the faithful-preorders characterization of (P) that has already been provided, Parikh's axiom is fully characterized in terms of all popular constructive models of Belief Revision. Since the notions of relevance and local change are inherent in almost all intellectual activity, the completion of the constructive view of (P) has a significant impact on many theoretical, as well as applied, domains of Artificial Intelligence

    New Perspectives on Games and Interaction

    Get PDF
    This volume is a collection of papers presented at the 2007 colloquium on new perspectives on games and interaction at the Royal Dutch Academy of Sciences in Amsterdam. The purpose of the colloquium was to clarify the uses of the concepts of game theory, and to identify promising new directions. This important collection testifies to the growing importance of game theory as a tool to capture the concepts of strategy, interaction, argumentation, communication, cooperation and competition. Also, it provides evidence for the richness of game theory and for its impressive and growing application

    Epistemic-entrenchment characterization of Parikh's axiom

    Full text link
    In this article, we provide the epistemicentrenchment characterization of the weak version of Parikh's relevance-sensitive axiom for belief revision - known as axiom (P) - for the general case of incomplete theories. Loosely speaking, axiom (P) states that, if a belief set K can be divided into two disjoint compartments, and the new information φ relates only to the first compartment, then the second compartment should not be affected by the revision of K by φ. The above-mentioned characterization, essentially, constitutes additional constraints on epistemicentrenchment preorders, that induce AGM revision functions, satisfying the weak version of Parikh's axiom (P)
    corecore