120,822 research outputs found

    Epigenetic aberrations and cancer

    Get PDF
    The correlation between epigenetic aberrations and disease underscores the importance of epigenetic mechanisms. Here, we review recent findings regarding chromatin modifications and their relevance to cancer

    Assessing the Epigenetic Status of Human Telomeres

    Get PDF
    The epigenetic modifications of human telomeres play a relevant role in telomere functions and cell proliferation. Therefore, their study is becoming an issue of major interest. These epigenetic modifications are usually analyzed by microscopy or by chromatin immunoprecipitation (ChIP). However, these analyses could be challenged by subtelomeres and/or interstitial telomeric sequences (ITSs). Whereas telomeres and subtelomeres cannot be differentiated by microscopy techniques, telomeres and ITSs might not be differentiated in ChIP analyses. In addition, ChIP analyses of telomeres should be properly controlled. Hence, studies focusing on the epigenetic features of human telomeres have to be carefully designed and interpreted. Here, we present a comprehensive discussion on how subtelomeres and ITSs might influence studies of human telomere epigenetics. We specially focus on the influence of ITSs and some experimental aspects of the ChIP technique on ChIP analyses. In addition, we propose a specific pipeline to accurately perform these studies. This pipeline is very simple and can be applied to a wide variety of cells, including cancer cells. Since the epigenetic status of telomeres could influence cancer cells proliferation, this pipeline might help design precise epigenetic treatments for specific cancer types.Spanish Agency of ResearchEuropean Fund for Regional Development European Union BIO2016-78955-

    Non-mammalian model organisms in epigenetic research : an overview

    Get PDF
    Recent advances in sequencing technology and genome editing tools had an indisputably enormous impact on our understanding of complex biological pathways and their genetic and epigenetic regulation. Unlike genetics, a study of phenotype development as a result of genotypic diversity, epigenetics studies the emergence of (possibly heritable) phenotypic assortment from one DNA sequence. Epigenetic modifications (i.e., DNA methylation, histone tail modifications, noncoding RNA interference, and many others) are diverse and can bring an additional layer of complexity to phenotype development and it's inheritance. Still, today, detailed mechanisms behind the development of epigenetic marks, their interaction, and their role in transgenerational inheritance of phenotypes are not fully understood. Therefore, chromatin biology and epigenetic research have a rich history of chasing discoveries in a variety of model organisms, including yeast, worms, flies, fish, and plants. Use of these models has opened numerous new avenues for investigation in the field. In the coming future, model organisms will continue to serve as an inseparable part of studies related to interpreting complex genomic and epigenomic data, gene–protein functional relationship, various diseases pathways, aging, and many others. Use of the model organism will provide insights not only into novel genetic players but also the profound impact of epigenetics on phenotype development. Here, we present a brief overview of the most commonly used nonmammalian model organism (i.e., fruit fly, nematode worm, zebrafish, and yeast) as potential experimental systems for epigenetic studies

    BPA-Induced Deregulation of Epigenetic Patterns: Effects on Female Zebrafish Reproduction

    Get PDF
    Bisphenol A (BPA) is one of the commonest Endocrine Disruptor Compounds worldwide. It interferes with vertebrate reproduction, possibly by inducing deregulation of epigenetic mechanisms. To determine its effects on female reproductive physiology and investigate whether changes in the expression levels of genes related to reproduction are caused by histone modifications, BPA concentrations consistent with environmental exposure were administered to zebrafish for three weeks. Effects on oocyte growth and maturation, autophagy and apoptosis processes, histone modifications, and DNA methylation were assessed by Real-Time PCR (qPCR), histology, and chromatin immunoprecipitation combined with qPCR analysis (ChIP-qPCR). The results showed that 5 μg/L BPA down-regulated oocyte maturation-promoting signals, likely through changes in the chromatin structure mediated by histone modifications, and promoted apoptosis in mature follicles. These data indicate that the negative effects of BPA on the female reproductive system may be due to its upstream ability to deregulate epigenetic mechanism

    Implication des modifications épigénétiques dans les cancers : développement de nouvelles approches thérapeutiques

    Get PDF
    Involvement of epigenetic modifications in cancers: development of new therapeutic approaches. Since cancer is the second cause of death after cardiovascular diseases in industrialized countries, it is urgent to elaborate new therapeutic approaches. Besides DNA mutations of essential genes, expansion of a cancer cell is frequently associated with epigenetic modifications i.e. not directly coded by the DNA sequence. Amongst epigenetic modifications, histones acetylation and DNA methylation are known to play important roles. In this context, a very promising anticancer therapy would be to correct epigenetic errors using compounds modulating histone acetylation and DNA methylation alone or in combination with other chemotherapeutic agents

    The Emerging Role of Epigenetic Modifiers in Repair of DNA Damage Associated with Chronic Inflammatory Diseases

    Get PDF
    At sites of chronic inflammation epithelial cells are exposed to high levels of reactive oxygen species (ROS), which can contribute to the initiation and development of many different human cancers. Aberrant epigenetic alterations that cause transcriptional silencing of tumor suppressor genes are also implicated in many diseases associated with inflammation, including cancer. However, it is not clear how altered epigenetic gene silencing is initiated during chronic inflammation. The high level of ROS at sites of inflammation is known to induce oxidative DNA damage in surrounding epithelial cells. Furthermore, DNA damage is known to trigger several responses, including recruitment of DNA repair proteins, transcriptional repression, chromatin modifications and other cell signaling events. Recruitment of epigenetic modifiers to chromatin in response to DNA damage results in transient covalent modifications to chromatin such as histone ubiquitination, acetylation and methylation and DNA methylation. DNA damage also alters non-coding RNA expression. All of these alterations have the potential to alter gene expression at sites of damage. Typically, these modifications and gene transcription are restored back to normal once the repair of the DNA damage is completed. However, chronic inflammation may induce sustained DNA damage and DNA damage responses that result in these transient covalent chromatin modifications becoming mitotically stable epigenetic alterations. Understanding how epigenetic alterations are initiated during chronic inflammation will allow us to develop pharmaceutical strategies to prevent or treat chronic inflammation-induced cancer. This review will focus on types of DNA damage and epigenetic alterations associated with chronic inflammatory diseases, the types of DNA damage and transient covalent chromatin modifications induced by inflammation and oxidative DNA damage and how these modifications may result in epigenetic alterations

    Poly(ADP-ribosyl)ation is involved in the epigenetic control of TET1 gene transcription

    Get PDF
    TET enzymes are the epigenetic factors involved in the formation of the Sixth DNA base 5-hydroxymethylcytosine, whose deregulation has been associated with tumorigenesis. In particular, TET1 acts as tumor suppressor preventing cell proliferation and tumor metastasis and it has frequently been found down-regulated in cancer. Thus, considering the importance of a tight control of TET1 expression, the epigenetic mechanisms involved in the transcriptional regulation of TET1 gene are here investigated. The involvement of poly(ADP-ribosyl)ation in the control of DNA and histone methylation on TET1 gene was examined. PARP activity is able to positively regulate TET1 expression maintaining a permissive chromatin state characterized by DNA hypomethylation of TET1 CpG island as well as high levels of H3K4 trimethylation. These epigenetic modifications were affected by PAR depletion causing TET1 downregulation and in turn reduced recruitment of TET1 protein on HOXA9 target gene. In conclusion, this work shows that PARP activity is a transcriptional regulator of TET1 gene through the control of epigenetic events and it suggests that deregulation of these mechanisms could account for TET1 repression in cancer

    Epigenetic Information-Body Interaction and Information-Assisted Evolution from the Perspective of the Informational Model of Consciousness

    Get PDF
    Introduction: the objective of this investigation is to analyses the advances of understanding in the epigenetic processes and to extract conclusions concerning the information-based evolution from the perspective of the Informational Model of Consciousness (IMC). Analysis of epigenetic mechanisms: it is shown that the study of the epigenetic mechanisms are of increasing interest not only to discover the responsible mechanisms of some diseases, but also to observe the acquisition and transmission mechanisms of some traits to the next generation/ transgenerations, without affecting the DNA sequences. These advances were especially supported by the spectacular progresses in the high technological tools like digital microfluidic techniques and semiconductor-based detection systems, allowing to apply sequencing methods of DNA and to observe its structural modifications. The specific typical steps of the epigenetic mechanisms are analysed, showing that these mechanisms could be fully described in terms of information, as signal transmission agents embodying or disembodying information in three different stages and under specific conditions, including especially the signal persistence as a main conditional epigenetic factor. Results concerning the information-assisted evolution from the perspective of IMC: the epigenetic mechanisms are discussed as a function of each component of the informational system of the organism, consisting in memory, decisional operability, emotional reactivity, metabolic driving processes, genetic transmission, genetic info-generator and the info-connection explaining the special extra-power properties of the mind. It is shown that the epigenetic mechanisms could be related to the specific functions of each informational component, mainly exhibiting five levels of integration of information as matter-related information, culminating with the stable integration in the procreation cells and transmission to the next generation. The results were extended to explain the transgenerational adaptive processes of isolated population groups. Conclusion: the epigenetic mechanisms discussed within IMC allow to understand the transgenerational adaptation as an information-assisted proces
    corecore