24,907 research outputs found

    Adaptive Resonance: An Emerging Neural Theory of Cognition

    Full text link
    Adaptive resonance is a theory of cognitive information processing which has been realized as a family of neural network models. In recent years, these models have evolved to incorporate new capabilities in the cognitive, neural, computational, and technological domains. Minimal models provide a conceptual framework, for formulating questions about the nature of cognition; an architectural framework, for mapping cognitive functions to cortical regions; a semantic framework, for precisely defining terms; and a computational framework, for testing hypotheses. These systems are here exemplified by the distributed ART (dART) model, which generalizes localist ART systems to allow arbitrarily distributed code representations, while retaining basic capabilities such as stable fast learning and scalability. Since each component is placed in the context of a unified real-time system, analysis can move from the level of neural processes, including learning laws and rules of synaptic transmission, to cognitive processes, including attention and consciousness. Local design is driven by global functional constraints, with each network synthesizing a dynamic balance of opposing tendencies. The self-contained working ART and dART models can also be transferred to technology, in areas that include remote sensing, sensor fusion, and content-addressable information retrieval from large databases.Office of Naval Research and the defense Advanced Research Projects Agency (N00014-95-1-0409, N00014-1-95-0657); National Institutes of Health (20-316-4304-5

    Adaptive Resonance Theory

    Full text link

    ART Neural Networks: Distributed Coding and ARTMAP Applications

    Full text link
    ART (Adaptive Resonance Theory) neural networks for fast, stable learning and prediction have been applied in a variety of areas. Applications include airplane design and manufacturing, automatic target recognition, financial forecasting, machine tool monitoring, digital circuit design, chemical analysis, and robot vision. Supervised ART architectures, called ARTMAP systems, feature internal control mechanisms that create stable recognition categories of optimal size by maximizing code compression while minimizing predictive error in an on-line setting. Special-purpose requirements of various application domains have led to a number of ARTMAP variants, including fuzzy ARTMAP, ART-EMAP, Gaussian ARTMAP, and distributed ARTMAP. ARTMAP has been used for a variety of applications, including computer-assisted medical diagnosis. Medical databases present many of the challenges found in general information management settings where speed, efficiency, ease of use, and accuracy are at a premium. A direct goal of improved computer-assisted medicine is to help deliver quality emergency care in situations that may be less than ideal. Working with these problems has stimulated a number of ART architecture developments, including ARTMAP-IC [1]. This paper describes a recent collaborative effort, using a new cardiac care database for system development, has brought together medical statisticians and clinicians at the New England Medical Center with researchers developing expert systems and neural networks, in order to create a hybrid method for medical diagnosis. The paper also considers new neural network architectures, including distributed ART {dART), a real-time model of parallel distributed pattern learning that permits fast as well as slow adaptation, without catastrophic forgetting. Local synaptic computations in the dART model quantitatively match the paradoxical phenomenon of Markram-Tsodyks [2] redistribution of synaptic efficacy, as a consequence of global system hypotheses.Office of Naval Research (N00014-95-1-0409, N00014-95-1-0657

    The evolution of representation in simple cognitive networks

    Get PDF
    Representations are internal models of the environment that can provide guidance to a behaving agent, even in the absence of sensory information. It is not clear how representations are developed and whether or not they are necessary or even essential for intelligent behavior. We argue here that the ability to represent relevant features of the environment is the expected consequence of an adaptive process, give a formal definition of representation based on information theory, and quantify it with a measure R. To measure how R changes over time, we evolve two types of networks---an artificial neural network and a network of hidden Markov gates---to solve a categorization task using a genetic algorithm. We find that the capacity to represent increases during evolutionary adaptation, and that agents form representations of their environment during their lifetime. This ability allows the agents to act on sensorial inputs in the context of their acquired representations and enables complex and context-dependent behavior. We examine which concepts (features of the environment) our networks are representing, how the representations are logically encoded in the networks, and how they form as an agent behaves to solve a task. We conclude that R should be able to quantify the representations within any cognitive system, and should be predictive of an agent's long-term adaptive success.Comment: 36 pages, 10 figures, one Tabl

    Integrating Symbolic and Neural Processing in a Self-Organizing Architechture for Pattern Recognition and Prediction

    Full text link
    British Petroleum (89A-1204); Defense Advanced Research Projects Agency (N00014-92-J-4015); National Science Foundation (IRI-90-00530); Office of Naval Research (N00014-91-J-4100); Air Force Office of Scientific Research (F49620-92-J-0225

    The hippocampus and cerebellum in adaptively timed learning, recognition, and movement

    Full text link
    The concepts of declarative memory and procedural memory have been used to distinguish two basic types of learning. A neural network model suggests how such memory processes work together as recognition learning, reinforcement learning, and sensory-motor learning take place during adaptive behaviors. To coordinate these processes, the hippocampal formation and cerebellum each contain circuits that learn to adaptively time their outputs. Within the model, hippocampal timing helps to maintain attention on motivationally salient goal objects during variable task-related delays, and cerebellar timing controls the release of conditioned responses. This property is part of the model's description of how cognitive-emotional interactions focus attention on motivationally valued cues, and how this process breaks down due to hippocampal ablation. The model suggests that the hippocampal mechanisms that help to rapidly draw attention to salient cues could prematurely release motor commands were not the release of these commands adaptively timed by the cerebellum. The model hippocampal system modulates cortical recognition learning without actually encoding the representational information that the cortex encodes. These properties avoid the difficulties faced by several models that propose a direct hippocampal role in recognition learning. Learning within the model hippocampal system controls adaptive timing and spatial orientation. Model properties hereby clarify how hippocampal ablations cause amnesic symptoms and difficulties with tasks which combine task delays, novelty detection, and attention towards goal objects amid distractions. When these model recognition, reinforcement, sensory-motor, and timing processes work together, they suggest how the brain can accomplish conditioning of multiple sensory events to delayed rewards, as during serial compound conditioning.Air Force Office of Scientific Research (F49620-92-J-0225, F49620-86-C-0037, 90-0128); Advanced Research Projects Agency (ONR N00014-92-J-4015); Office of Naval Research (N00014-91-J-4100, N00014-92-J-1309, N00014-92-J-1904); National Institute of Mental Health (MH-42900
    • …
    corecore