263 research outputs found

    Enumerative properties of Ferrers graphs

    Full text link
    We define a class of bipartite graphs that correspond naturally with Ferrers diagrams. We give expressions for the number of spanning trees, the number of Hamiltonian paths when applicable, the chromatic polynomial, and the chromatic symmetric function. We show that the linear coefficient of the chromatic polynomial is given by the excedance set statistic.Comment: 12 page

    Enumerative Coding for Grassmannian Space

    Full text link
    The Grassmannian space \Gr is the set of all kk-dimensional subspaces of the vector space~\smash{\F_q^n}. Recently, codes in the Grassmannian have found an application in network coding. The main goal of this paper is to present efficient enumerative encoding and decoding techniques for the Grassmannian. These coding techniques are based on two different orders for the Grassmannian induced by different representations of kk-dimensional subspaces of \F_q^n. One enumerative coding method is based on a Ferrers diagram representation and on an order for \Gr based on this representation. The complexity of this enumerative coding is O(k5/2(nk)5/2)O(k^{5/2} (n-k)^{5/2}) digit operations. Another order of the Grassmannian is based on a combination of an identifying vector and a reduced row echelon form representation of subspaces. The complexity of the enumerative coding, based on this order, is O(nk(nk)lognloglogn)O(nk(n-k)\log n\log\log n) digits operations. A combination of the two methods reduces the complexity on average by a constant factor.Comment: to appear in IEEE Transactions on Information Theor

    Boolean complexes for Ferrers graphs

    Full text link
    In this paper we provide an explicit formula for calculating the boolean number of a Ferrers graph. By previous work of the last two authors, this determines the homotopy type of the boolean complex of the graph. Specializing to staircase shapes, we show that the boolean numbers of the associated Ferrers graphs are the Genocchi numbers of the second kind, and obtain a relation between the Legendre-Stirling numbers and the Genocchi numbers of the second kind. In another application, we compute the boolean number of a complete bipartite graph, corresponding to a rectangular Ferrers shape, which is expressed in terms of the Stirling numbers of the second kind. Finally, we analyze the complexity of calculating the boolean number of a Ferrers graph using these results and show that it is a significant improvement over calculating by edge recursion.Comment: final version, to appear in the The Australasian Journal of Combinatoric

    On k-crossings and k-nestings of permutations

    Full text link
    We introduce k-crossings and k-nestings of permutations. We show that the crossing number and the nesting number of permutations have a symmetric joint distribution. As a corollary, the number of k-noncrossing permutations is equal to the number of k-nonnesting permutations. We also provide some enumerative results for k-noncrossing permutations for some values of k

    Simplicial matrix-tree theorems

    Get PDF
    We generalize the definition and enumeration of spanning trees from the setting of graphs to that of arbitrary-dimensional simplicial complexes Δ\Delta, extending an idea due to G. Kalai. We prove a simplicial version of the Matrix-Tree Theorem that counts simplicial spanning trees, weighted by the squares of the orders of their top-dimensional integral homology groups, in terms of the Laplacian matrix of Δ\Delta. As in the graphic case, one can obtain a more finely weighted generating function for simplicial spanning trees by assigning an indeterminate to each vertex of Δ\Delta and replacing the entries of the Laplacian with Laurent monomials. When Δ\Delta is a shifted complex, we give a combinatorial interpretation of the eigenvalues of its weighted Laplacian and prove that they determine its set of faces uniquely, generalizing known results about threshold graphs and unweighted Laplacian eigenvalues of shifted complexes.Comment: 36 pages, 2 figures. Final version, to appear in Trans. Amer. Math. So

    Biconed graphs, edge-rooted forests, and h-vectors of matroid complexes

    Full text link
    A well-known conjecture of Richard Stanley posits that the hh-vector of the independence complex of a matroid is a pure O{\mathcal O}-sequence. The conjecture has been established for various classes but is open for graphic matroids. A biconed graph is a graph with two specified `coning vertices', such that every vertex of the graph is connected to at least one coning vertex. The class of biconed graphs includes coned graphs, Ferrers graphs, and complete multipartite graphs. We study the hh-vectors of graphic matroids arising from biconed graphs, providing a combinatorial interpretation of their entries in terms of `edge-rooted forests' of the underlying graph. This generalizes constructions of Kook and Lee who studied the M\"obius coinvariant (the last nonzero entry of the hh-vector) of graphic matroids of complete bipartite graphs. We show that allowing for partially edge-rooted forests gives rise to a pure multicomplex whose face count recovers the hh-vector, establishing Stanley's conjecture for this class of matroids.Comment: 15 pages, 3 figures; V2: added omitted author to metadat
    corecore