2,007 research outputs found
The flip-graph of the 4-dimensional cube is connected
Flip-graph connectedness is established here for the vertex set of the
4-dimensional cube. It is found as a consequence that this vertex set has 92
487 256 triangulations, partitioned into 247 451 symmetry classes.Comment: 20 pages, 3 figures, revised proofs and notation
An Edge-Based Framework for Enumerating 3-Manifold Triangulations
A typical census of 3-manifolds contains all manifolds (under various constraints) that can be triangulated with at most n tetrahedra. Although censuses are useful resources for mathematicians, constructing them is difficult: the best algorithms to date have not gone beyond n=12. The underlying algorithms essentially (i) enumerate all relevant 4-regular multigraphs on n nodes, and then (ii) for each multigraph G they enumerate possible 3-manifold triangulations with G as their dual 1-skeleton, of which there could be exponentially many. In practice, a small number of multigraphs often dominate the running times of census algorithms: for example, in a typical census on 10 tetrahedra, almost half of the running time is spent on just 0.3% of the graphs. Here we present a new algorithm for stage (ii), which is the computational bottleneck in this process. The key idea is to build triangulations by recursively constructing neighbourhoods of edges, in contrast to traditional algorithms which recursively glue together pairs of tetrahedron faces. We implement this algorithm, and find experimentally that whilst the overall performance is mixed, the new algorithm runs significantly faster on those "pathological" multigraphs for which existing methods are extremely slow. In this way the old and new algorithms complement one another, and together can yield significant performance improvements over either method alone
Face pairing graphs and 3-manifold enumeration
The face pairing graph of a 3-manifold triangulation is a 4-valent graph
denoting which tetrahedron faces are identified with which others. We present a
series of properties that must be satisfied by the face pairing graph of a
closed minimal P^2-irreducible triangulation. In addition we present
constraints upon the combinatorial structure of such a triangulation that can
be deduced from its face pairing graph. These results are then applied to the
enumeration of closed minimal P^2-irreducible 3-manifold triangulations,
leading to a significant improvement in the performance of the enumeration
algorithm. Results are offered for both orientable and non-orientable
triangulations.Comment: 30 pages, 57 figures; v2: clarified some passages and generalised the
  final theorem to the non-orientable case; v3: fixed a flaw in the proof of
  the conical face lemm
Equivelar and d-Covered Triangulations of Surfaces. I
We survey basic properties and bounds for -equivelar and -covered
triangulations of closed surfaces. Included in the survey is a list of the
known sources for -equivelar and -covered triangulations. We identify all
orientable and non-orientable surfaces  of Euler characteristic
 which admit non-neighborly -equivelar triangulations
with equality in the upper bound
. These
examples give rise to -covered triangulations with equality in the upper
bound . A
generalization of Ringel's cyclic  series of neighborly
orientable triangulations to a two-parameter family of cyclic orientable
triangulations , , , is the main result of this
paper. In particular, the two infinite subseries  and
, , provide non-neighborly examples with equality for
the upper bound for  as well as derived examples with equality for the upper
bound for .Comment: 21 pages, 4 figure
- …
