1,694 research outputs found

    Period and toroidal knot mosaics

    Full text link
    Knot mosaic theory was introduced by Lomonaco and Kauffman in the paper on `Quantum knots and mosaics' to give a precise and workable definition of quantum knots, intended to represent an actual physical quantum system. A knot (m,n)-mosaic is an m ⁣× ⁣nm \! \times \! n matrix whose entries are eleven mosaic tiles, representing a knot or a link by adjoining properly. In this paper we introduce two variants of knot mosaics: period knot mosaics and toroidal knot mosaics, which are common features in physics and mathematics. We present an algorithm producing the exact enumeration of period knot (m,n)-mosaics for any positive integers m and n, toroidal knot (m,n)-mosaics for co-prime integers m and n, and furthermore toroidal knot (p,p)-mosaics for a prime number p. We also analyze the asymptotics of the growth rates of their cardinality
    corecore