6,477 research outputs found

    Generalized permutation patterns - a short survey

    Get PDF
    An occurrence of a classical pattern p in a permutation Ļ€ is a subsequence of Ļ€ whose letters are in the same relative order (of size) as those in p. In an occurrence of a generalized pattern, some letters of that subsequence may be required to be adjacent in the permutation. Subsets of permutations characterized by the avoidanceā€”or the prescribed number of occurrencesā€” of generalized patterns exhibit connections to an enormous variety of other combinatorial structures, some of them apparently deep. We give a short overview of the state of the art for generalized patterns

    Avoiding vincular patterns on alternating words

    Get PDF
    A word w=w1w2ā‹Æwnw=w_1w_2\cdots w_n is alternating if either w1w3ā‹Æw_1w_3\cdots (when the word is up-down) or w1>w2w4<ā‹Æw_1>w_2w_4<\cdots (when the word is down-up). The study of alternating words avoiding classical permutation patterns was initiated by the authors in~\cite{GKZ}, where, in particular, it was shown that 123-avoiding up-down words of even length are counted by the Narayana numbers. However, not much was understood on the structure of 123-avoiding up-down words. In this paper, we fill in this gap by introducing the notion of a cut-pair that allows us to subdivide the set of words in question into equivalence classes. We provide a combinatorial argument to show that the number of equivalence classes is given by the Catalan numbers, which induces an alternative (combinatorial) proof of the corresponding result in~\cite{GKZ}. Further, we extend the enumerative results in~\cite{GKZ} to the case of alternating words avoiding a vincular pattern of length 3. We show that it is sufficient to enumerate up-down words of even length avoiding the consecutive pattern 132ā€¾\underline{132} and up-down words of odd length avoiding the consecutive pattern 312ā€¾\underline{312} to answer all of our enumerative questions. The former of the two key cases is enumerated by the Stirling numbers of the second kind.Comment: 25 pages; To appear in Discrete Mathematic

    Counting occurrences of some subword patterns

    Full text link
    We find generating functions the number of strings (words) containing a specified number of occurrences of certain types of order-isomorphic classes of substrings called subword patterns. In particular, we find generating functions for the number of strings containing a specified number of occurrences of a given 3-letter subword pattern.Comment: 9 page

    Pattern avoidance in labelled trees

    Full text link
    We discuss a new notion of pattern avoidance motivated by the operad theory: pattern avoidance in planar labelled trees. It is a generalisation of various types of consecutive pattern avoidance studied before: consecutive patterns in words, permutations, coloured permutations etc. The notion of Wilf equivalence for patterns in permutations admits a straightforward generalisation for (sets of) tree patterns; we describe classes for trees with small numbers of leaves, and give several bijections between trees avoiding pattern sets from the same class. We also explain a few general results for tree pattern avoidance, both for the exact and the asymptotic enumeration.Comment: 27 pages, corrected various misprints, added an appendix explaining the operadic contex

    Some open problems on permutation patterns

    Full text link
    This is a brief survey of some open problems on permutation patterns, with an emphasis on subjects not covered in the recent book by Kitaev, \emph{Patterns in Permutations and words}. I first survey recent developments on the enumeration and asymptotics of the pattern 1324, the last pattern of length 4 whose asymptotic growth is unknown, and related issues such as upper bounds for the number of avoiders of any pattern of length kk for any given kk. Other subjects treated are the M\"obius function, topological properties and other algebraic aspects of the poset of permutations, ordered by containment, and also the study of growth rates of permutation classes, which are containment closed subsets of this poset.Comment: 20 pages. Related to upcoming talk at the British Combinatorial Conference 2013. To appear in London Mathematical Society Lecture Note Serie
    • ā€¦
    corecore